Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks
Yang Yang; Qing Meng; Dong Yue; Tengfei Zhang; Bo Zhao; Xiaolei Hou
Kybernetika (2020)
- Volume: 56, Issue: 2, page 298-322
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topYang, Yang, et al. "Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks." Kybernetika 56.2 (2020): 298-322. <http://eudml.org/doc/296947>.
@article{Yang2020,
abstract = {We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.},
author = {Yang, Yang, Meng, Qing, Yue, Dong, Zhang, Tengfei, Zhao, Bo, Hou, Xiaolei},
journal = {Kybernetika},
keywords = {networked control system; secure control; adaptive control; dynamic surface control},
language = {eng},
number = {2},
pages = {298-322},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks},
url = {http://eudml.org/doc/296947},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Yang, Yang
AU - Meng, Qing
AU - Yue, Dong
AU - Zhang, Tengfei
AU - Zhao, Bo
AU - Hou, Xiaolei
TI - Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 298
EP - 322
AB - We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.
LA - eng
KW - networked control system; secure control; adaptive control; dynamic surface control
UR - http://eudml.org/doc/296947
ER -
References
top- An, L., Yang, G. H., 10.1109/tcyb.2017.2787740, IEEE Trans. Cybernet. 49 (2019), 3, 827-838. DOI10.1109/tcyb.2017.2787740
- Boubakir, A., Labiod, S., Boudjema, F., 10.1080/00207721.2013.772259, Int. J. Systems Sci. 45 (2014), 12, 2490-2498. MR3233170DOI10.1080/00207721.2013.772259
- Chen, W., Ding, D., Ge, X., Han, Q. L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. (2018) 1-11. DOI10.1109/tcyb.2018.2885567
- Chen, B., Zhang, H., Lin, C., 10.1109/tnnls.2015.2412121, IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98. MR3465627DOI10.1109/tnnls.2015.2412121
- Gahinet, P., Nemirovskii, A., Laub, A. J., 10.1109/cdc.1994.411440, In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041. DOI10.1109/cdc.1994.411440
- Ge, X., Han, Q. L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
- Ding, L., Han, Q. L., Ge, X., 10.1109/tcyb.2017.2771560, IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. MR3554944DOI10.1109/tcyb.2017.2771560
- Ding, D., Wang, Z., Han, Q. L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
- Dolk, V. S., Tesi, P., Persis, C. D., 10.1109/tcns.2016.2613445, IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105. MR3632431DOI10.1109/tcns.2016.2613445
- Ge, X., Han, Q. L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernetics 49 (2019), 1, 171-183. MR4101428DOI10.1109/tcyb.2017.2769722
- Ge, X., Han, Q. L., Zhang, X. M., 10.1109/tie.2017.2752148, IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426. DOI10.1109/tie.2017.2752148
- Hu, S., Yue, D., Xie, X., 10.1109/tcyb.2018.2861834, IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281. DOI10.1109/tcyb.2018.2861834
- Ding, D., Han, Q. L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
- Farraj, A., Hammad, E., Kundur, D., 10.1109/tsg.2016.2581588, IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215. DOI10.1109/tsg.2016.2581588
- Ge, X., Han, Q. L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
- Kulkarni, A., Purwar, S., 10.1093/imamci/dnw075, IMA J. Math. Control Inform. 3 (2018), 35, 757-771. MR3858289DOI10.1093/imamci/dnw075
- Li, Y., Tong, S., 10.1016/j.ins.2014.08.060, Inform. Sci. 29 (2015), 125-142. MR3267054DOI10.1016/j.ins.2014.08.060
- Li, Y., Tong, S., Li, T., 10.1109/tcyb.2014.2333738, IEEE Trans. Cybernet. 45 (2014), 1, 138-149. DOI10.1109/tcyb.2014.2333738
- Liu, X., Sun, X., Non-fragile recursive sliding mode dynamic surface control with adaptive neural network., Control Theory Appl. 30 (2013), 10, 1323-1328.
- Liu, X., Sun, X., Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains., Acta Automat. Sinica 40 (2014), 10, 2193-2202.
- Lu, A. Y., Yang, G. H., 10.1109/tac.2017.2751999, IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820. MR3807663DOI10.1109/tac.2017.2751999
- Lv, C., Liu, Y., Hu, X., 10.1109/tcyb.2017.2738003, IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367. DOI10.1109/tcyb.2017.2738003
- Niu, B., Li, H., Qin, T., 10.1109/tsmc.2017.2696710, IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688. DOI10.1109/tsmc.2017.2696710
- Otto, J., Vogel-Heuser, B., Niggemann, O., 10.1109/tii.2017.2718729, IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282. DOI10.1109/tii.2017.2718729
- Persis, C. D., Tesi, P., 10.1109/tac.2015.2416924, IEEE Trans. Automat. Control. 60 (2015), 11, 2930-2944. MR3419582DOI10.1109/tac.2015.2416924
- Qin, J., Li, M., Shi, L., 10.1109/tac.2017.2756259, IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663. MR3807654DOI10.1109/tac.2017.2756259
- Shen, Z., Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer., Control Theory Appl. 35 (2018), 8, 1092-1100.
- Shen, Z., Zhang, X., Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains., Acta Automat. Sinica 44 (2018), 10, 1833-1841.
- Shi, X., Lim, C. C., Shi, P., 10.1109/tnnls.2018.2793968, IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213. MR3867838DOI10.1109/tnnls.2018.2793968
- Sun, H., Peng, C., Zhang, W., 10.1016/j.jfranklin.2018.04.001, J. Franklin Inst. 356 (2018), 17, 10277-10295. MR4034978DOI10.1016/j.jfranklin.2018.04.001
- Sun, Y. C., Yang, G. H., 10.1016/j.jfranklin.2018.06.009, J. Franklin Inst. 355 (2018), 13, 5613-5631. MR3835109DOI10.1016/j.jfranklin.2018.06.009
- Sun, Y. C., Yang, G. H., 10.1016/j.ins.2018.07.030, Inform. Sci. 465 (2018), 340-352. MR3846182DOI10.1016/j.ins.2018.07.030
- Swaroop, D., Hedrick, J. K., Yip, P. P., 10.1109/tac.2000.880994, IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899. MR1795360DOI10.1109/tac.2000.880994
- Tian, E., Wang, Z., Zou, L., Yue, D., 10.1016/j.automatica.2019.05.039, Automatica 107 (2019), 296-305. MR3959670DOI10.1016/j.automatica.2019.05.039
- Tian, E., Wang, Z., Zou, L., Yue, D., 10.1002/rnc.4447, Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498. MR3915146DOI10.1002/rnc.4447
- Tong, S., Li, Y., Jing, X., 10.1016/j.ins.2013.02.033, Inform. Sci. 235 (2013), 287-307. MR3042302DOI10.1016/j.ins.2013.02.033
- Wang, Y., Gao, Y., Karimi, H. R., 10.1109/tsmc.2017.2720968, IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675. DOI10.1109/tsmc.2017.2720968
- Wang, D., Huang, J., 10.1109/tnn.2004.839354, IEEE Trans. Neural Networks 16 (2005), 1, 195-202. DOI10.1109/tnn.2004.839354
- Wu, L., Gao, Y., Liu, J., 10.1016/j.automatica.2017.04.032, Automatica 82 (2017), 79-92. MR3658743DOI10.1016/j.automatica.2017.04.032
- Xu, L., Guo, Q., Yang, T., 10.1109/tsg.2018.2888629, IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629. DOI10.1109/tsg.2018.2888629
- Ye, X., 10.1109/tac.2002.804464, IEEE Trans. Automat. Control 48 (2003), 1, 169-173. MR1950330DOI10.1109/tac.2002.804464
- Yang, J., Chen, Y., Cui, L., 10.1007/s12555-016-0331-0, Int. Control Automat. Syst. 15 (2017), 4, 1485-1493. DOI10.1007/s12555-016-0331-0
- Yu, J., Ma, Y., Yu, H., 10.1016/j.ins.2016.10.018, Inform. Sci. 376 (2017), 172-189. DOI10.1016/j.ins.2016.10.018
- Yu, Q., Wu, B., 10.1080/00207721.2013.816089, Int. J. Systems Sci. 46 (2015), 7, 1278-1287. MR3298169DOI10.1080/00207721.2013.816089
- Zhai, D., An, L., Dong, J., 10.1109/tfuzz.2017.2686378, IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597. DOI10.1109/tfuzz.2017.2686378
- Zhai, G., Hu, B., Yasuda, K., 10.1080/00207720116692, Int. J. Systems Sci. 32 (2001), 8, 1055-1061. MR1958764DOI10.1080/00207720116692
- Zhai, D., Xi, C., An, L., 10.1109/tsmc.2016.2571338, IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269. DOI10.1109/tsmc.2016.2571338
- Zhang, H., Cheng, P., Shi, L., 10.1109/tac.2015.2409905, IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028. MR3419593DOI10.1109/tac.2015.2409905
- Zhang, T. P., Ge, S. S., 10.1016/j.automatica.2007.11.025, Automatica 44 (2008), 7, 1895-1903. MR2528143DOI10.1016/j.automatica.2007.11.025
- Zhang, X. M., Han, Q. L., Ge, X., 10.1109/jas.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3841465DOI10.1109/jas.2019.1911651
- Zhang, T., Xia, M., Yi, Y., 10.1109/tsmc.2017.2675540, IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387. MR3654606DOI10.1109/tsmc.2017.2675540
- Zuo, Z., Han, Q. L., Ning, B., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
- Zou, A. M., Hou, Z. G., Tan, M., 10.1109/tfuzz.2008.917301, IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897. DOI10.1109/tfuzz.2008.917301
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.