Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks

Yang Yang; Qing Meng; Dong Yue; Tengfei Zhang; Bo Zhao; Xiaolei Hou

Kybernetika (2020)

  • Volume: 56, Issue: 2, page 298-322
  • ISSN: 0023-5954

Abstract

top
We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.

How to cite

top

Yang, Yang, et al. "Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks." Kybernetika 56.2 (2020): 298-322. <http://eudml.org/doc/296947>.

@article{Yang2020,
abstract = {We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.},
author = {Yang, Yang, Meng, Qing, Yue, Dong, Zhang, Tengfei, Zhao, Bo, Hou, Xiaolei},
journal = {Kybernetika},
keywords = {networked control system; secure control; adaptive control; dynamic surface control},
language = {eng},
number = {2},
pages = {298-322},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks},
url = {http://eudml.org/doc/296947},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Yang, Yang
AU - Meng, Qing
AU - Yue, Dong
AU - Zhang, Tengfei
AU - Zhao, Bo
AU - Hou, Xiaolei
TI - Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 298
EP - 322
AB - We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.
LA - eng
KW - networked control system; secure control; adaptive control; dynamic surface control
UR - http://eudml.org/doc/296947
ER -

References

top
  1. An, L., Yang, G. H., 10.1109/tcyb.2017.2787740, IEEE Trans. Cybernet. 49 (2019), 3, 827-838. DOI10.1109/tcyb.2017.2787740
  2. Boubakir, A., Labiod, S., Boudjema, F., 10.1080/00207721.2013.772259, Int. J. Systems Sci. 45 (2014), 12, 2490-2498. MR3233170DOI10.1080/00207721.2013.772259
  3. Chen, W., Ding, D., Ge, X., Han, Q. L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. (2018) 1-11. DOI10.1109/tcyb.2018.2885567
  4. Chen, B., Zhang, H., Lin, C., 10.1109/tnnls.2015.2412121, IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98. MR3465627DOI10.1109/tnnls.2015.2412121
  5. Gahinet, P., Nemirovskii, A., Laub, A. J., 10.1109/cdc.1994.411440, In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041. DOI10.1109/cdc.1994.411440
  6. Ge, X., Han, Q. L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
  7. Ding, L., Han, Q. L., Ge, X., 10.1109/tcyb.2017.2771560, IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. MR3554944DOI10.1109/tcyb.2017.2771560
  8. Ding, D., Wang, Z., Han, Q. L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
  9. Dolk, V. S., Tesi, P., Persis, C. D., 10.1109/tcns.2016.2613445, IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105. MR3632431DOI10.1109/tcns.2016.2613445
  10. Ge, X., Han, Q. L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernetics 49 (2019), 1, 171-183. MR4101428DOI10.1109/tcyb.2017.2769722
  11. Ge, X., Han, Q. L., Zhang, X. M., 10.1109/tie.2017.2752148, IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426. DOI10.1109/tie.2017.2752148
  12. Hu, S., Yue, D., Xie, X., 10.1109/tcyb.2018.2861834, IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281. DOI10.1109/tcyb.2018.2861834
  13. Ding, D., Han, Q. L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
  14. Farraj, A., Hammad, E., Kundur, D., 10.1109/tsg.2016.2581588, IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215. DOI10.1109/tsg.2016.2581588
  15. Ge, X., Han, Q. L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
  16. Kulkarni, A., Purwar, S., 10.1093/imamci/dnw075, IMA J. Math. Control Inform. 3 (2018), 35, 757-771. MR3858289DOI10.1093/imamci/dnw075
  17. Li, Y., Tong, S., 10.1016/j.ins.2014.08.060, Inform. Sci. 29 (2015), 125-142. MR3267054DOI10.1016/j.ins.2014.08.060
  18. Li, Y., Tong, S., Li, T., 10.1109/tcyb.2014.2333738, IEEE Trans. Cybernet. 45 (2014), 1, 138-149. DOI10.1109/tcyb.2014.2333738
  19. Liu, X., Sun, X., Non-fragile recursive sliding mode dynamic surface control with adaptive neural network., Control Theory Appl. 30 (2013), 10, 1323-1328. 
  20. Liu, X., Sun, X., Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains., Acta Automat. Sinica 40 (2014), 10, 2193-2202. 
  21. Lu, A. Y., Yang, G. H., 10.1109/tac.2017.2751999, IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820. MR3807663DOI10.1109/tac.2017.2751999
  22. Lv, C., Liu, Y., Hu, X., 10.1109/tcyb.2017.2738003, IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367. DOI10.1109/tcyb.2017.2738003
  23. Niu, B., Li, H., Qin, T., 10.1109/tsmc.2017.2696710, IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688. DOI10.1109/tsmc.2017.2696710
  24. Otto, J., Vogel-Heuser, B., Niggemann, O., 10.1109/tii.2017.2718729, IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282. DOI10.1109/tii.2017.2718729
  25. Persis, C. D., Tesi, P., 10.1109/tac.2015.2416924, IEEE Trans. Automat. Control. 60 (2015), 11, 2930-2944. MR3419582DOI10.1109/tac.2015.2416924
  26. Qin, J., Li, M., Shi, L., 10.1109/tac.2017.2756259, IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663. MR3807654DOI10.1109/tac.2017.2756259
  27. Shen, Z., Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer., Control Theory Appl. 35 (2018), 8, 1092-1100. 
  28. Shen, Z., Zhang, X., Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains., Acta Automat. Sinica 44 (2018), 10, 1833-1841. 
  29. Shi, X., Lim, C. C., Shi, P., 10.1109/tnnls.2018.2793968, IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213. MR3867838DOI10.1109/tnnls.2018.2793968
  30. Sun, H., Peng, C., Zhang, W., 10.1016/j.jfranklin.2018.04.001, J. Franklin Inst. 356 (2018), 17, 10277-10295. MR4034978DOI10.1016/j.jfranklin.2018.04.001
  31. Sun, Y. C., Yang, G. H., 10.1016/j.jfranklin.2018.06.009, J. Franklin Inst. 355 (2018), 13, 5613-5631. MR3835109DOI10.1016/j.jfranklin.2018.06.009
  32. Sun, Y. C., Yang, G. H., 10.1016/j.ins.2018.07.030, Inform. Sci. 465 (2018), 340-352. MR3846182DOI10.1016/j.ins.2018.07.030
  33. Swaroop, D., Hedrick, J. K., Yip, P. P., 10.1109/tac.2000.880994, IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899. MR1795360DOI10.1109/tac.2000.880994
  34. Tian, E., Wang, Z., Zou, L., Yue, D., 10.1016/j.automatica.2019.05.039, Automatica 107 (2019), 296-305. MR3959670DOI10.1016/j.automatica.2019.05.039
  35. Tian, E., Wang, Z., Zou, L., Yue, D., 10.1002/rnc.4447, Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498. MR3915146DOI10.1002/rnc.4447
  36. Tong, S., Li, Y., Jing, X., 10.1016/j.ins.2013.02.033, Inform. Sci. 235 (2013), 287-307. MR3042302DOI10.1016/j.ins.2013.02.033
  37. Wang, Y., Gao, Y., Karimi, H. R., 10.1109/tsmc.2017.2720968, IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675. DOI10.1109/tsmc.2017.2720968
  38. Wang, D., Huang, J., 10.1109/tnn.2004.839354, IEEE Trans. Neural Networks 16 (2005), 1, 195-202. DOI10.1109/tnn.2004.839354
  39. Wu, L., Gao, Y., Liu, J., 10.1016/j.automatica.2017.04.032, Automatica 82 (2017), 79-92. MR3658743DOI10.1016/j.automatica.2017.04.032
  40. Xu, L., Guo, Q., Yang, T., 10.1109/tsg.2018.2888629, IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629. DOI10.1109/tsg.2018.2888629
  41. Ye, X., 10.1109/tac.2002.804464, IEEE Trans. Automat. Control 48 (2003), 1, 169-173. MR1950330DOI10.1109/tac.2002.804464
  42. Yang, J., Chen, Y., Cui, L., 10.1007/s12555-016-0331-0, Int. Control Automat. Syst. 15 (2017), 4, 1485-1493. DOI10.1007/s12555-016-0331-0
  43. Yu, J., Ma, Y., Yu, H., 10.1016/j.ins.2016.10.018, Inform. Sci. 376 (2017), 172-189. DOI10.1016/j.ins.2016.10.018
  44. Yu, Q., Wu, B., 10.1080/00207721.2013.816089, Int. J. Systems Sci. 46 (2015), 7, 1278-1287. MR3298169DOI10.1080/00207721.2013.816089
  45. Zhai, D., An, L., Dong, J., 10.1109/tfuzz.2017.2686378, IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597. DOI10.1109/tfuzz.2017.2686378
  46. Zhai, G., Hu, B., Yasuda, K., 10.1080/00207720116692, Int. J. Systems Sci. 32 (2001), 8, 1055-1061. MR1958764DOI10.1080/00207720116692
  47. Zhai, D., Xi, C., An, L., 10.1109/tsmc.2016.2571338, IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269. DOI10.1109/tsmc.2016.2571338
  48. Zhang, H., Cheng, P., Shi, L., 10.1109/tac.2015.2409905, IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028. MR3419593DOI10.1109/tac.2015.2409905
  49. Zhang, T. P., Ge, S. S., 10.1016/j.automatica.2007.11.025, Automatica 44 (2008), 7, 1895-1903. MR2528143DOI10.1016/j.automatica.2007.11.025
  50. Zhang, X. M., Han, Q. L., Ge, X., 10.1109/jas.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3841465DOI10.1109/jas.2019.1911651
  51. Zhang, T., Xia, M., Yi, Y., 10.1109/tsmc.2017.2675540, IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387. MR3654606DOI10.1109/tsmc.2017.2675540
  52. Zuo, Z., Han, Q. L., Ning, B., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
  53. Zou, A. M., Hou, Z. G., Tan, M., 10.1109/tfuzz.2008.917301, IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897. DOI10.1109/tfuzz.2008.917301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.