# Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari; Behrooz Khosravi

Czechoslovak Mathematical Journal (2021)

- Issue: 1, page 191-209
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topShahsavari, Hossein, and Khosravi, Behrooz. "Characterization by intersection graph of some families of finite nonsimple groups." Czechoslovak Mathematical Journal (2021): 191-209. <http://eudml.org/doc/296957>.

@article{Shahsavari2021,

abstract = {For a finite group $G$, $\Gamma (G)$, the intersection graph of $G$, is a simple graph whose vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\ne 1$. In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.},

author = {Shahsavari, Hossein, Khosravi, Behrooz},

journal = {Czechoslovak Mathematical Journal},

keywords = {intersection graph; leaf; nonsimple group; characterization},

language = {eng},

number = {1},

pages = {191-209},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Characterization by intersection graph of some families of finite nonsimple groups},

url = {http://eudml.org/doc/296957},

year = {2021},

}

TY - JOUR

AU - Shahsavari, Hossein

AU - Khosravi, Behrooz

TI - Characterization by intersection graph of some families of finite nonsimple groups

JO - Czechoslovak Mathematical Journal

PY - 2021

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

IS - 1

SP - 191

EP - 209

AB - For a finite group $G$, $\Gamma (G)$, the intersection graph of $G$, is a simple graph whose vertices are all nontrivial proper subgroups of $G$ and two distinct vertices $H$ and $K$ are adjacent when $H\cap K\ne 1$. In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

LA - eng

KW - intersection graph; leaf; nonsimple group; characterization

UR - http://eudml.org/doc/296957

ER -

## References

top- Akbari, S., Heydari, F., Maghasedi, M., 10.1142/S0219498815500656, J. Algebra Appl. 14 (2015), Article ID 1550065, 9 pages. (2015) Zbl1309.05090MR3323326DOI10.1142/S0219498815500656
- Csákány, B., Pollák, G., 10.21136/CMJ.1969.100891, Czech. Math. J. 19 (1969), 241-247 Russian. (1969) Zbl0218.20019MR0249328DOI10.21136/CMJ.1969.100891
- Glasby, S. P., Pálfy, P. P., Schneider, C., 10.1016/j.jalgebra.2011.10.005, J. Algebra 348 (2011), 85-109. (2011) Zbl1252.20014MR2852233DOI10.1016/j.jalgebra.2011.10.005
- Kayacan, S., 10.1080/00927872.2016.1233209, Commun. Algebra 45 (2017), 2466-2477. (2017) Zbl1388.20035MR3594532DOI10.1080/00927872.2016.1233209
- Kayacan, S., Yaraneri, E., 10.1007/s10474-015-0486-9, Acta Math. Hung. 146 (2015), 107-127. (2015) Zbl1374.20047MR3348183DOI10.1007/s10474-015-0486-9
- Kayacan, S., Yaraneri, E., 10.4134/JKMS.2015.52.1.081, J. Korean Math. Soc. 52 (2015), 81-96. (2015) Zbl1314.20016MR3299371DOI10.4134/JKMS.2015.52.1.081
- Shahsavari, H., Khosravi, B., 10.21136/CMJ.2017.0446-16, Czech. Math. J. 67 (2017), 1145-1153. (2017) Zbl06819578MR3736024DOI10.21136/CMJ.2017.0446-16
- Shahsavari, H., Khosravi, B., 10.1080/00927872.2019.1682151, Commun. Algebra 48 (2020), 1266-1280. (2020) Zbl1435.05104MR4079532DOI10.1080/00927872.2019.1682151
- Shen, R., 10.1007/s10587-010-0085-4, Czech. Math. J. 60 (2010), 945-950. (2010) Zbl1208.20022MR2738958DOI10.1007/s10587-010-0085-4
- Taunt, D. R., 10.1017/S0305004100029881, Proc. Camb. Philos. Soc. 51 (1955), 25-36. (1955) Zbl0064.02402MR0067886DOI10.1017/S0305004100029881
- Zelinka, B., 10.21136/CMJ.1975.101307, Czech. Math. J. 25 (1975), 171-174. (1975) Zbl0311.05119MR0372075DOI10.21136/CMJ.1975.101307

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.