A Characterization of the Finite Groups PSL (n, q).
Menon’s identity is a classical identity involving gcd sums and the Euler totient function . A natural generalization of is the Klee’s function . We derive a Menon-type identity using Klee’s function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
Given a generating family F of subgroups of a group G closed under conjugation and with partial order compatible with inclusion, a new group S can be constructed, taking into account the multiplication in the subgroups and their mutual actions given by conjugation. The group S is called the active sum of F, has G as a homomorph and is such that S/Z(S) ≅ G/Z(G) where Z denotes the center.The basic question we investigate in this paper is: when is the active sum S of the family F isomorphic to the...
For a finite group , , the intersection graph of , is a simple graph whose vertices are all nontrivial proper subgroups of and two distinct vertices and are adjacent when . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.