Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method
Martin Ladecký; Ivana Pultarová; Jan Zeman
Applications of Mathematics (2021)
- Volume: 66, Issue: 1, page 21-42
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLadecký, Martin, Pultarová, Ivana, and Zeman, Jan. "Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method." Applications of Mathematics 66.1 (2021): 21-42. <http://eudml.org/doc/296961>.
@article{Ladecký2021,
abstract = {A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.},
author = {Ladecký, Martin, Pultarová, Ivana, Zeman, Jan},
journal = {Applications of Mathematics},
keywords = {bound on eigenvalues; preconditioning; elliptic differential equation},
language = {eng},
number = {1},
pages = {21-42},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method},
url = {http://eudml.org/doc/296961},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Ladecký, Martin
AU - Pultarová, Ivana
AU - Zeman, Jan
TI - Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 21
EP - 42
AB - A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.
LA - eng
KW - bound on eigenvalues; preconditioning; elliptic differential equation
UR - http://eudml.org/doc/296961
ER -
References
top- Blaheta, R., 10.1002/nla.1680010203, Numer. Linear Algebra Appl. 1 (1994), 107-128. (1994) Zbl0837.65021MR1277796DOI10.1002/nla.1680010203
- Ciarlet, P. G., 10.1016/S0168-2024(08)70055-9, Studies in Mathematics and Its Applications 20. North-Holland, Amsterdam (1988). (1988) Zbl0648.73014MR0936420DOI10.1016/S0168-2024(08)70055-9
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z., 10.1137/18M1212458, SIAM J. Numer. Anal. 57 (2019), 1369-1394. (2019) Zbl07100344MR3961990DOI10.1137/18M1212458
- Gergelits, T., Nielsen, B. F., Strakoš, Z., 10.1137/20M1316159, SIAM J. Numer. Anal. 58 (2020), 2193-2211. (2020) Zbl07236291MR4128499DOI10.1137/20M1316159
- Gergelits, T., Strakoš, Z., 10.1007/s11075-013-9713-z, Numer. Algorithms 65 (2014), 759-782. (2014) Zbl1298.65054MR3187962DOI10.1007/s11075-013-9713-z
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. The John Hopkins University Press, Baltimore (1996). (1996) Zbl0865.65009MR1417720
- Liesen, J., Strakoš, Z., 10.1093/acprof:oso/9780199655410.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). (2013) Zbl1263.65034MR3024841DOI10.1093/acprof:oso/9780199655410.001.0001
- Meurant, G., Strakoš, Z., 10.1017/S096249290626001X, Acta Numerica 15 (2006), 471-542. (2006) Zbl1113.65032MR2269746DOI10.1017/S096249290626001X
- Meurant, G., Tichý, P., 10.1007/s11075-012-9591-9, Numer. Algorithms 62 (2013), 163-191. (2013) Zbl1261.65034MR3011386DOI10.1007/s11075-012-9591-9
- Nečas, J., Hlaváček, I., 10.1016/c2009-0-12554-0, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). (1981) Zbl0448.73009MR0600655DOI10.1016/c2009-0-12554-0
- Nielsen, B. F., Tveito, A., Hackbusch, W., 10.1093/imanum/drm018, IMA J. Numer. Anal. 29 (2009), 24-42. (2009) Zbl1167.65066MR2470938DOI10.1093/imanum/drm018
- Saad, Y., 10.1137/1.9780898718003, Society for Industrial and Applied Mathematics, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
- Serre, D., 10.1007/978-1-4419-7683-3, Graduate Texts in Mathematics 216. Springer, New York (2010). (2010) Zbl1206.15001MR2744852DOI10.1007/978-1-4419-7683-3
- Strakoš, Z., 10.1016/0024-3795(91)90393-B, Linear Algebra Appl. 154-156 (1991), 535-549. (1991) Zbl0732.65021MR1113159DOI10.1016/0024-3795(91)90393-B
- Sluis, A. van der, Vorst, H. A. van der, 10.1007/BF01389450, Numer. Math. 48 (1986), 543-560. (1986) Zbl0596.65015MR0839616DOI10.1007/BF01389450
- Vorst, H. A. van der, 10.1017/CBO9780511615115, Cambridge Monographs on Applied and Computational Mathematics 13. Cambridge University Press, Cambridge (2003). (2003) Zbl1023.65027MR1990752DOI10.1017/CBO9780511615115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.