Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method

Martin Ladecký; Ivana Pultarová; Jan Zeman

Applications of Mathematics (2021)

  • Volume: 66, Issue: 1, page 21-42
  • ISSN: 0862-7940

Abstract

top
A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.

How to cite

top

Ladecký, Martin, Pultarová, Ivana, and Zeman, Jan. "Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method." Applications of Mathematics 66.1 (2021): 21-42. <http://eudml.org/doc/296961>.

@article{Ladecký2021,
abstract = {A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.},
author = {Ladecký, Martin, Pultarová, Ivana, Zeman, Jan},
journal = {Applications of Mathematics},
keywords = {bound on eigenvalues; preconditioning; elliptic differential equation},
language = {eng},
number = {1},
pages = {21-42},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method},
url = {http://eudml.org/doc/296961},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Ladecký, Martin
AU - Pultarová, Ivana
AU - Zeman, Jan
TI - Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 21
EP - 42
AB - A method of characterizing all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in Gergelits, Mardal, Nielsen, and Strakoš (2019). Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, and preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.
LA - eng
KW - bound on eigenvalues; preconditioning; elliptic differential equation
UR - http://eudml.org/doc/296961
ER -

References

top
  1. Blaheta, R., 10.1002/nla.1680010203, Numer. Linear Algebra Appl. 1 (1994), 107-128. (1994) Zbl0837.65021MR1277796DOI10.1002/nla.1680010203
  2. Ciarlet, P. G., 10.1016/S0168-2024(08)70055-9, Studies in Mathematics and Its Applications 20. North-Holland, Amsterdam (1988). (1988) Zbl0648.73014MR0936420DOI10.1016/S0168-2024(08)70055-9
  3. Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
  4. Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z., 10.1137/18M1212458, SIAM J. Numer. Anal. 57 (2019), 1369-1394. (2019) Zbl07100344MR3961990DOI10.1137/18M1212458
  5. Gergelits, T., Nielsen, B. F., Strakoš, Z., 10.1137/20M1316159, SIAM J. Numer. Anal. 58 (2020), 2193-2211. (2020) Zbl07236291MR4128499DOI10.1137/20M1316159
  6. Gergelits, T., Strakoš, Z., 10.1007/s11075-013-9713-z, Numer. Algorithms 65 (2014), 759-782. (2014) Zbl1298.65054MR3187962DOI10.1007/s11075-013-9713-z
  7. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. The John Hopkins University Press, Baltimore (1996). (1996) Zbl0865.65009MR1417720
  8. Liesen, J., Strakoš, Z., 10.1093/acprof:oso/9780199655410.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). (2013) Zbl1263.65034MR3024841DOI10.1093/acprof:oso/9780199655410.001.0001
  9. Meurant, G., Strakoš, Z., 10.1017/S096249290626001X, Acta Numerica 15 (2006), 471-542. (2006) Zbl1113.65032MR2269746DOI10.1017/S096249290626001X
  10. Meurant, G., Tichý, P., 10.1007/s11075-012-9591-9, Numer. Algorithms 62 (2013), 163-191. (2013) Zbl1261.65034MR3011386DOI10.1007/s11075-012-9591-9
  11. Nečas, J., Hlaváček, I., 10.1016/c2009-0-12554-0, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). (1981) Zbl0448.73009MR0600655DOI10.1016/c2009-0-12554-0
  12. Nielsen, B. F., Tveito, A., Hackbusch, W., 10.1093/imanum/drm018, IMA J. Numer. Anal. 29 (2009), 24-42. (2009) Zbl1167.65066MR2470938DOI10.1093/imanum/drm018
  13. Saad, Y., 10.1137/1.9780898718003, Society for Industrial and Applied Mathematics, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
  14. Serre, D., 10.1007/978-1-4419-7683-3, Graduate Texts in Mathematics 216. Springer, New York (2010). (2010) Zbl1206.15001MR2744852DOI10.1007/978-1-4419-7683-3
  15. Strakoš, Z., 10.1016/0024-3795(91)90393-B, Linear Algebra Appl. 154-156 (1991), 535-549. (1991) Zbl0732.65021MR1113159DOI10.1016/0024-3795(91)90393-B
  16. Sluis, A. van der, Vorst, H. A. van der, 10.1007/BF01389450, Numer. Math. 48 (1986), 543-560. (1986) Zbl0596.65015MR0839616DOI10.1007/BF01389450
  17. Vorst, H. A. van der, 10.1017/CBO9780511615115, Cambridge Monographs on Applied and Computational Mathematics 13. Cambridge University Press, Cambridge (2003). (2003) Zbl1023.65027MR1990752DOI10.1017/CBO9780511615115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.