Relations on a lattice of varieties of completely regular semigroups
Mathematica Bohemica (2020)
- Volume: 145, Issue: 3, page 225-240
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPetrich, Mario. "Relations on a lattice of varieties of completely regular semigroups." Mathematica Bohemica 145.3 (2020): 225-240. <http://eudml.org/doc/296970>.
@article{Petrich2020,
abstract = {Completely regular semigroups $\mathcal \{CR\}$ are considered here with the unary operation of inversion within the maximal subgroups of the semigroup. This makes $\mathcal \{CR\}$ a variety; its lattice of subvarieties is denoted by $\mathcal \{L(CR)\}$. We study here the relations $\{\mathbf \{K\},T,L\}$ and $\{\mathbf \{C\}\}$ relative to a sublattice $\Psi $ of $\mathcal \{L(CR)\}$ constructed in a previous publication. For $\{\mathbf \{R\}\}$ being any of these relations, we determine the $\{\mathbf \{R\}\}$-classes of all varieties in the lattice $\Psi $ as well as the restrictions of $\{\mathbf \{R\}\}$ to $\Psi $.},
author = {Petrich, Mario},
journal = {Mathematica Bohemica},
keywords = {semigroup; completely regular; variety; lattice; relation; kernel; trace; local relation; core},
language = {eng},
number = {3},
pages = {225-240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relations on a lattice of varieties of completely regular semigroups},
url = {http://eudml.org/doc/296970},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Petrich, Mario
TI - Relations on a lattice of varieties of completely regular semigroups
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 3
SP - 225
EP - 240
AB - Completely regular semigroups $\mathcal {CR}$ are considered here with the unary operation of inversion within the maximal subgroups of the semigroup. This makes $\mathcal {CR}$ a variety; its lattice of subvarieties is denoted by $\mathcal {L(CR)}$. We study here the relations ${\mathbf {K},T,L}$ and ${\mathbf {C}}$ relative to a sublattice $\Psi $ of $\mathcal {L(CR)}$ constructed in a previous publication. For ${\mathbf {R}}$ being any of these relations, we determine the ${\mathbf {R}}$-classes of all varieties in the lattice $\Psi $ as well as the restrictions of ${\mathbf {R}}$ to $\Psi $.
LA - eng
KW - semigroup; completely regular; variety; lattice; relation; kernel; trace; local relation; core
UR - http://eudml.org/doc/296970
ER -
References
top- Kad'ourek, J., 10.1007/BF02573217, Semigroup Forum 38 (1989), 1-55. (1989) Zbl0661.20037MR0961825DOI10.1007/BF02573217
- Pastijn, F., 10.1017/s1446788700030214, J. Aust. Math. Soc., Ser. A 49 (1990), 24-42. (1990) Zbl0706.20042MR1054080DOI10.1017/s1446788700030214
- Petrich, M., Some relations on the lattice of varieties of completely regular semigroups, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat., VIII. Ser. 5 (2002), 265-278. (2002) Zbl1072.20067MR1911191
- Petrich, M., 10.1017/S1446788700036405, J. Aust. Math. Soc. 83 (2007), 87-104. (2007) Zbl1142.20035MR2378436DOI10.1017/S1446788700036405
- Petrich, M., 10.1080/00927872.2012.667181, Commun. Algebra 42 (2014), 1397-1413. (2014) Zbl1302.20059MR3169638DOI10.1080/00927872.2012.667181
- Petrich, M., 10.1080/00927872.2014.907412, Commun. Algebra 43 (2015), 4080-4096. (2015) Zbl1339.20053MR3366561DOI10.1080/00927872.2014.907412
- Petrich, M., 10.1007/s00233-014-9591-2, Semigroup Forum 90 (2015), 53-99. (2015) Zbl1328.20077MR3297810DOI10.1007/s00233-014-9591-2
- Petrich, M., 10.1007/s00233-016-9817-6, Semigroup Forum 93 (2016), 607-628. (2016) Zbl06688592MR3572420DOI10.1007/s00233-016-9817-6
- Petrich, M., 10.1080/00927872.2016.1233190, Commun. Algebra 45 (2017), 2783-2794. (2017) Zbl1373.20072MR3594557DOI10.1080/00927872.2016.1233190
- Petrich, M., Reilly, N. R., 10.2140/pjm.1988.132.151, Pac. J. Math. 132 (1988), 151-175. (1988) Zbl0598.20061MR0929587DOI10.2140/pjm.1988.132.151
- Petrich, M., Reilly, N. R., 10.1016/0021-8693(90)90207-5, J. Algebra 134 (1990), 1-27. (1990) Zbl0706.20043MR1068411DOI10.1016/0021-8693(90)90207-5
- Petrich, M., Reilly, N. R., 10.1017/s1446788700030202, J. Aust. Math. Soc., Ser. A 49 (1990), 1-23. (1990) Zbl0708.20019MR1054079DOI10.1017/s1446788700030202
- Petrich, M., Reilly, N. R., Completely Regular Semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts 23. A Wiley-Interscience Publication. John Wiley & Sons, Chichester (1999). (1999) Zbl0967.20034MR1684919
- Polák, L., 10.1007/BF02575527, Semigroup Forum 32 (1985), 97-123. (1985) Zbl0564.20034MR0803483DOI10.1007/BF02575527
- Polák, L., 10.1007/BF02575021, Semigroup Forum 36 (1988), 253-284. (1988) Zbl0638.20032MR0916425DOI10.1007/BF02575021
- Reilly, N. R., Zhang, S., 10.1007/s000120050183, Algebra Univers. 44 (2000), 217-239. (2000) Zbl1013.08010MR1816020DOI10.1007/s000120050183
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.