Convergence of the tail probability for weighted sums of negatively orthant dependent random variables
Haiwu Huang; Linyan Li; Xuewen Lu
Kybernetika (2020)
- Volume: 56, Issue: 4, page 646-661
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHuang, Haiwu, Li, Linyan, and Lu, Xuewen. "Convergence of the tail probability for weighted sums of negatively orthant dependent random variables." Kybernetika 56.4 (2020): 646-661. <http://eudml.org/doc/296983>.
@article{Huang2020,
abstract = {In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.},
author = {Huang, Haiwu, Li, Linyan, Lu, Xuewen},
journal = {Kybernetika},
keywords = {negatively orthant dependent random variables; the tail probability; strong convergence},
language = {eng},
number = {4},
pages = {646-661},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convergence of the tail probability for weighted sums of negatively orthant dependent random variables},
url = {http://eudml.org/doc/296983},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Huang, Haiwu
AU - Li, Linyan
AU - Lu, Xuewen
TI - Convergence of the tail probability for weighted sums of negatively orthant dependent random variables
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 646
EP - 661
AB - In this research, strong convergence properties of the tail probability for weighted sums of negatively orthant dependent random variables are discussed. Some sharp theorems for weighted sums of arrays of rowwise negatively orthant dependent random variables are established. These results not only extend the corresponding ones of Cai [4], Wang et al. [19] and Shen [13], but also improve them, respectively.
LA - eng
KW - negatively orthant dependent random variables; the tail probability; strong convergence
UR - http://eudml.org/doc/296983
ER -
References
top- Amini, M., Bozorgnia, A., 10.1155/s104895330300008x, J. Appl. Math. Stoch. Anal. 16 (2003), 121-126. MR1989578DOI10.1155/s104895330300008x
- Asadian, N., Fakoor, V., Bozorgnia, A., Rosental's type inequalities for negatively orthant dependent random variables., J. Iranian Stat. Soc. 5 (2006), 1-2, 66-75.
- Bozorgnia, A., Patterson, R. F., Taylor, R. L., 10.1515/9783110883237.1639, World Congress Nonlinear Analysts'92 (1996), pp. 1639-1650. MR1389197DOI10.1515/9783110883237.1639
- Cai, G. H., 10.1007/s00184-007-0160-5, Metrika 68 (2008), 323-331. Zbl1247.60036MR2448963DOI10.1007/s00184-007-0160-5
- Chow, Y. S., On the rate of moment complete convergence of sample sums and extremes., Bull. Inst. Math. Acad. Sinica 16 (1988), 177-201. MR1089491
- Ebrahimi, N., Ghosh, M., 10.1080/03610928108828041, Commun. Stat., Theory Methods 10 (1981), 307-337. MR0612400DOI10.1080/03610928108828041
- Gan, S. X., Chen, P. Y., 10.1016/s0252-9602(12)60187-8, Acta. Math. Sci.32B (2012), 6, 2388-2400. MR2989424DOI10.1016/s0252-9602(12)60187-8
- Huang, H. W., Wang, D. C., 10.1186/1029-242x-2012-233, J. Inequal. Appl. (2012). Zbl1280.60022MR2678912DOI10.1186/1029-242x-2012-233
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 1, 286-295. MR0684886DOI10.1214/aos/1176346079
- Kuczmaszewska, A., 10.1080/07362990600958754, Stoch. Anal. Appl. 24 (2006), 1083-1095. MR2273771DOI10.1080/07362990600958754
- Qiu, D. H., Liu, X. D., Chen, P. Y., 10.1186/s13660-015-0577-8, J. Inequal. Appl. 2015. MR3313861DOI10.1186/s13660-015-0577-8
- Qiu, D. H., Wu, Q. Y., Chen, P. Y., 10.1186/1029-242x-2014-145, J. Inequal. Appl. (2014). MR3255876DOI10.1186/1029-242x-2014-145
- Shen, A. T., 10.1007/s13398-012-0067-5, RACSAM 107 (2013), 2, 257-271. Zbl1278.60060MR3199709DOI10.1007/s13398-012-0067-5
- Shen, A. T., Wu, R. C., 10.1186/1029-242x-2013-327, J. Inequal. Appl. (2013). Zbl1287.60040MR3081708DOI10.1186/1029-242x-2013-327
- Sung, S. H., 10.1016/j.jmaa.2011.02.058, J. Math. Anal. Appl. 381 (2011), 538-545. MR2802091DOI10.1016/j.jmaa.2011.02.058
- Volodin, A., On the Kolmogorov exponential inequality for negatively dependent random variables., Pakistan J. Stat. 18 (2002), 249-254. MR1944611
- Wang, X. J., Hu, S. H., Shen, A. T., Yang, W. Z., 10.1016/j.aml.2010.09.007, Appl. Math. Lett. 24 (2011), 219-223. MR2735145DOI10.1016/j.aml.2010.09.007
- Wang, X. J., Hu, S. H., Volodin, A., 10.4134/bkms.2011.48.5.923, Bull. Korean Math. Soc.48 (2011), 5, 923-938. MR2867181DOI10.4134/bkms.2011.48.5.923
- Wang, X. J., Hu, S. H., Yang, W. Z., 10.1007/s13398-011-0048-0, RACSAM 106 (2012), 2, 235-245. Zbl1260.60062MR2978912DOI10.1007/s13398-011-0048-0
- Wu, Q. Y., 10.1155/2010/507293, J. Inequal. Appl. (2010), Article ID 507293. Zbl1202.60050MR2611036DOI10.1155/2010/507293
- Wu, Q. Y., 10.1155/2011/202015, J. Probab. Stat. (2011), Article ID 202015. MR2774947DOI10.1155/2011/202015
- Wu, Q. Y., Probability Limit Theory for Mixing and Dependent Sequences., Science Press of China, Beijing 2006.
- Wu, Y. F., Sung, S. H., Volodin, A., 10.1007/s10986-014-9239-7, Lith. Math. J. 54 (2014), 2, 220-228. MR3212638DOI10.1007/s10986-014-9239-7
- Wu, Y. F., Zhu, D. J., 10.1016/j.jkss.2009.05.003, J. Korean Stat. Soc. 39 (2010), 189-197. MR2642485DOI10.1016/j.jkss.2009.05.003
- Zarei, H., Jabbari, H., 10.1007/s00362-009-0238-4, Stat. Pap. 52 (2009), 413-418. MR2795888DOI10.1007/s00362-009-0238-4
- Zhang, Q. X., Wang, D. C., 10.1155/2014/368702, Discrete Dyn. Nat. Soc. (2014), Article ID 368702. MR3253602DOI10.1155/2014/368702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.