Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras
Amir Sahami; Mohammad R. Omidi; Eghbal Ghaderi; Hamzeh Zangeneh
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 83-92
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSahami, Amir, et al. "Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 83-92. <http://eudml.org/doc/296984>.
@article{Sahami2020,
abstract = {We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras $\{\rm Lip\}_\{\alpha \}(X)$ and $\{\rm lip\}_\{\alpha \}(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha <1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.},
author = {Sahami, Amir, Omidi, Mohammad R., Ghaderi, Eghbal, Zangeneh, Hamzeh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximate biflatness; Johnson pseudo-contractibility; Lipschitz algebra; triangular Banach algebra},
language = {eng},
number = {1},
pages = {83-92},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras},
url = {http://eudml.org/doc/296984},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Sahami, Amir
AU - Omidi, Mohammad R.
AU - Ghaderi, Eghbal
AU - Zangeneh, Hamzeh
TI - Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 83
EP - 92
AB - We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras ${\rm Lip}_{\alpha }(X)$ and ${\rm lip}_{\alpha }(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha <1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.
LA - eng
KW - approximate biflatness; Johnson pseudo-contractibility; Lipschitz algebra; triangular Banach algebra
UR - http://eudml.org/doc/296984
ER -
References
top- Askari-Sayah M., Pourabbas A., Sahami A., 10.1007/s10476-019-0840-1, Anal. Math. 45 (2019), no. 3, 461–473. MR3995373DOI10.1007/s10476-019-0840-1
- Bade W. G., Curtis P. C. Jr., Dales H. G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR0896225
- Biyabani E., Rejali A., Approximate and character amenability of vector-valued Lipschitz algebras, Bull. Korean Math. Soc. 55 (2018), no. 4, 1109–1124. MR3845950
- Dales H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR1816726
- Dashti M., Nasr-Isfahani R., Soltani Renani S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR3150714DOI10.4153/CMB-2012-015-3
- Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Camb. Philos. Soc. 142 (2007), 111–123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
- Gourdeau F., 10.1017/S0305004100067840, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 351–355. MR0974991DOI10.1017/S0305004100067840
- Gourdeau F., 10.1017/S0305004100071267, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 581–588. MR1178007DOI10.1017/S0305004100071267
- Hu Z., Monfared M. S., Traynor T., 10.4064/sm193-1-3, Studia Math. 193 (2009), no. 1, 53–78. MR2506414DOI10.4064/sm193-1-3
- Kaniuth E., Lau A. T., Pym J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR2388235DOI10.1017/S0305004107000874
- Kelley J. L., General Topology, D. Van Nostrand Company, Toronto, 1955. Zbl0518.54001MR0070144
- Runde V., Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR1874893
- Sahami A., Pourabbas A., 10.1007/s00233-017-9912-3, Semigroup Forum 97 (2018), no. 2, 203–213. MR3852768DOI10.1007/s00233-017-9912-3
- Sahami A., Pourabbas A., 10.36045/bbms/1530065007, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 2, 171–182. MR3819120DOI10.36045/bbms/1530065007
- Samei E., Spronk N., Stokke R., 10.4153/CJM-2010-044-4, Canad. J. Math. 62 (2010), no. 4, 845–869. MR2674704DOI10.4153/CJM-2010-044-4
- Weaver N., Lipschitz Algebras, World Scientific Publishing Co., River Edge, 1999. MR1832645
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.