Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras

Amir Sahami; Mohammad R. Omidi; Eghbal Ghaderi; Hamzeh Zangeneh

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 1, page 83-92
  • ISSN: 0010-2628

Abstract

top
We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space X , the Lipschitz algebras Lip α ( X ) and lip α ( X ) are approximately biflat if and only if X is finite, provided that 0 < α < 1 . We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.

How to cite

top

Sahami, Amir, et al. "Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 83-92. <http://eudml.org/doc/296984>.

@article{Sahami2020,
abstract = {We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras $\{\rm Lip\}_\{\alpha \}(X)$ and $\{\rm lip\}_\{\alpha \}(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha <1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.},
author = {Sahami, Amir, Omidi, Mohammad R., Ghaderi, Eghbal, Zangeneh, Hamzeh},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximate biflatness; Johnson pseudo-contractibility; Lipschitz algebra; triangular Banach algebra},
language = {eng},
number = {1},
pages = {83-92},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras},
url = {http://eudml.org/doc/296984},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Sahami, Amir
AU - Omidi, Mohammad R.
AU - Ghaderi, Eghbal
AU - Zangeneh, Hamzeh
TI - Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 83
EP - 92
AB - We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras ${\rm Lip}_{\alpha }(X)$ and ${\rm lip}_{\alpha }(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha <1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat.
LA - eng
KW - approximate biflatness; Johnson pseudo-contractibility; Lipschitz algebra; triangular Banach algebra
UR - http://eudml.org/doc/296984
ER -

References

top
  1. Askari-Sayah M., Pourabbas A., Sahami A., 10.1007/s10476-019-0840-1, Anal. Math. 45 (2019), no. 3, 461–473. MR3995373DOI10.1007/s10476-019-0840-1
  2. Bade W. G., Curtis P. C. Jr., Dales H. G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR0896225
  3. Biyabani E., Rejali A., Approximate and character amenability of vector-valued Lipschitz algebras, Bull. Korean Math. Soc. 55 (2018), no. 4, 1109–1124. MR3845950
  4. Dales H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR1816726
  5. Dashti M., Nasr-Isfahani R., Soltani Renani S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR3150714DOI10.4153/CMB-2012-015-3
  6. Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Camb. Philos. Soc. 142 (2007), 111–123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
  7. Gourdeau F., 10.1017/S0305004100067840, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 351–355. MR0974991DOI10.1017/S0305004100067840
  8. Gourdeau F., 10.1017/S0305004100071267, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 581–588. MR1178007DOI10.1017/S0305004100071267
  9. Hu Z., Monfared M. S., Traynor T., 10.4064/sm193-1-3, Studia Math. 193 (2009), no. 1, 53–78. MR2506414DOI10.4064/sm193-1-3
  10. Kaniuth E., Lau A. T., Pym J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR2388235DOI10.1017/S0305004107000874
  11. Kelley J. L., General Topology, D. Van Nostrand Company, Toronto, 1955. Zbl0518.54001MR0070144
  12. Runde V., Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR1874893
  13. Sahami A., Pourabbas A., 10.1007/s00233-017-9912-3, Semigroup Forum 97 (2018), no. 2, 203–213. MR3852768DOI10.1007/s00233-017-9912-3
  14. Sahami A., Pourabbas A., 10.36045/bbms/1530065007, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 2, 171–182. MR3819120DOI10.36045/bbms/1530065007
  15. Samei E., Spronk N., Stokke R., 10.4153/CJM-2010-044-4, Canad. J. Math. 62 (2010), no. 4, 845–869. MR2674704DOI10.4153/CJM-2010-044-4
  16. Weaver N., Lipschitz Algebras, World Scientific Publishing Co., River Edge, 1999. MR1832645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.