Leibniz -algebras
Communications in Mathematics (2020)
- Volume: 28, Issue: 2, page 103-121
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topTowers, David A.. "Leibniz $A$-algebras." Communications in Mathematics 28.2 (2020): 103-121. <http://eudml.org/doc/296990>.
@article{Towers2020,
abstract = {A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.},
author = {Towers, David A.},
journal = {Communications in Mathematics},
keywords = {Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras},
language = {eng},
number = {2},
pages = {103-121},
publisher = {University of Ostrava},
title = {Leibniz $A$-algebras},
url = {http://eudml.org/doc/296990},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Towers, David A.
TI - Leibniz $A$-algebras
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 103
EP - 121
AB - A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
LA - eng
KW - Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
UR - http://eudml.org/doc/296990
ER -
References
top- Bakhturin, Yu.A., Semenov, K.N., On the finite approximability of solvable varieties of Lie algebras, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. (1986) MR0872075
- Barnes, D.W., 10.1080/00927872.2010.489529, Communications in Algebra, 39, 7, 2011, 2463-2472, (2011) Zbl1268.17001MR2821724DOI10.1080/00927872.2010.489529
- Bloh, A., On a generalization of Lie algebra notion, USSR Doklady, 165, 3, 1965, 471-473, (1965) MR0193114
- Dallmer, E., On Lie algebras all nilpotent subalgebras of which are Abelian, Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, (1999) MR1702410
- Drenski, V.S., Solvable Lie -algebras, Serdica, 9, 1983, 132-135, (1983) MR0731837
- Jacobson, N., Lie Algebras, 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. (1962) Zbl0121.27504MR0143793
- Loday, J.L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, (1993) MR1252069
- Loday, J.-L., Pirashvili, T., 10.1007/BF01445099, Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, (1993) MR1213376DOI10.1007/BF01445099
- Premet, A.A., Inner ideals in modular Lie algebras, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, (1986) MR0876665
- Premet, A.A., 10.1070/SM1987v057n01ABEH003060, Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, (1987) MR0830100DOI10.1070/SM1987v057n01ABEH003060
- Premet, A.A., Semenov, K.N., 10.1070/SM1990v065n01ABEH001142, Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, (1990) MR0965882DOI10.1070/SM1990v065n01ABEH001142
- Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E., 10.1080/00927872.2011.643844, Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, (2013) MR3044424DOI10.1080/00927872.2011.643844
- Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L., 10.1080/00927872.2012.717655, Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, (2014) MR3169714DOI10.1080/00927872.2012.717655
- Schafer, R.D., An introduction to nonassociative algebras (Pure & Applied Mathematics), 1966, Academic Press, New York, (1966) MR0210757
- Semenov, K.N., Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules, Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, (1991) MR1197373
- Sheina, G.V., Varieties of metabelian Lie -algebras. I, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. (1977) MR0486027
- Sheina, G.V., Varieties of metabelian Lie -algebras. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. (1978) MR0486028
- Sheina, G.V., Metabelian varieties Lie -algebras. Russian, Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, (1978) MR0486029
- Towers, D.A., 10.1112/plms/s3-27.3.440, Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, (1973) MR0427393DOI10.1112/plms/s3-27.3.440
- Towers, D.A., 10.1016/j.jalgebra.2011.06.003, Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, (2011) MR2813558DOI10.1016/j.jalgebra.2011.06.003
- Towers, D.A., Varea, V.R., 10.1016/j.jalgebra.2006.11.034, Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, (2007) MR2333190DOI10.1016/j.jalgebra.2006.11.034
- Towers, D.A., Varea, V.R., 10.1080/00927872.2011.643667, Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, (2013) MR3044418DOI10.1080/00927872.2011.643667
- Winter, D.J., Abstract Lie Algebras, 1972, M.I.T. Press, Cambridge, Mass., (1972) MR0332905
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.