Leibniz A -algebras

David A. Towers

Communications in Mathematics (2020)

  • Volume: 28, Issue: 2, page 103-121
  • ISSN: 1804-1388

Abstract

top
A finite-dimensional Lie algebra is called an A -algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.

How to cite

top

Towers, David A.. "Leibniz $A$-algebras." Communications in Mathematics 28.2 (2020): 103-121. <http://eudml.org/doc/296990>.

@article{Towers2020,
abstract = {A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.},
author = {Towers, David A.},
journal = {Communications in Mathematics},
keywords = {Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras},
language = {eng},
number = {2},
pages = {103-121},
publisher = {University of Ostrava},
title = {Leibniz $A$-algebras},
url = {http://eudml.org/doc/296990},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Towers, David A.
TI - Leibniz $A$-algebras
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 103
EP - 121
AB - A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
LA - eng
KW - Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
UR - http://eudml.org/doc/296990
ER -

References

top
  1. Bakhturin, Yu.A., Semenov, K.N., On the finite approximability of solvable varieties of Lie algebras, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51. (1986) MR0872075
  2. Barnes, D.W., 10.1080/00927872.2010.489529, Communications in Algebra, 39, 7, 2011, 2463-2472, (2011) Zbl1268.17001MR2821724DOI10.1080/00927872.2010.489529
  3. Bloh, A., On a generalization of Lie algebra notion, USSR Doklady, 165, 3, 1965, 471-473, (1965) MR0193114
  4. Dallmer, E., On Lie algebras all nilpotent subalgebras of which are Abelian, Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics, (1999) MR1702410
  5. Drenski, V.S., Solvable Lie A -algebras, Serdica, 9, 1983, 132-135, (1983) MR0731837
  6. Jacobson, N., Lie Algebras, 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10. (1962) Zbl0121.27504MR0143793
  7. Loday, J.L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Mathématique, 39, 3-4, 1993, 269-293, (1993) MR1252069
  8. Loday, J.-L., Pirashvili, T., 10.1007/BF01445099, Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag, (1993) MR1213376DOI10.1007/BF01445099
  9. Premet, A.A., Inner ideals in modular Lie algebras, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15, (1986) MR0876665
  10. Premet, A.A., 10.1070/SM1987v057n01ABEH003060, Mathematics of the USSR - Sbornik, 57, 1, 1987, 151-164, IOP Publishing, (1987) MR0830100DOI10.1070/SM1987v057n01ABEH003060
  11. Premet, A.A., Semenov, K.N., 10.1070/SM1990v065n01ABEH001142, Mathematics of the USSR - Sbornik, 65, 1, 1990, 109-118, IOP Publishing, (1990) MR0965882DOI10.1070/SM1990v065n01ABEH001142
  12. Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E., 10.1080/00927872.2011.643844, Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis, (2013) MR3044424DOI10.1080/00927872.2011.643844
  13. Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L., 10.1080/00927872.2012.717655, Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis, (2014) MR3169714DOI10.1080/00927872.2012.717655
  14. Schafer, R.D., An introduction to nonassociative algebras (Pure & Applied Mathematics), 1966, Academic Press, New York, (1966) MR0210757
  15. Semenov, K.N., Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules, Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138, (1991) MR1197373
  16. Sheina, G.V., Varieties of metabelian Lie A -algebras. I, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35.. (1977) MR0486027
  17. Sheina, G.V., Varieties of metabelian Lie A -algebras. II, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54.. (1978) MR0486028
  18. Sheina, G.V., Metabelian varieties Lie A -algebras. Russian, Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210, (1978) MR0486029
  19. Towers, D.A., 10.1112/plms/s3-27.3.440, Proceedings of the London Mathematical Society, 3, 3, 1973, 440-462, Narnia, (1973) MR0427393DOI10.1112/plms/s3-27.3.440
  20. Towers, D.A., 10.1016/j.jalgebra.2011.06.003, Journal of Algebra, 340, 1, 2011, 1-12, Elsevier, (2011) MR2813558DOI10.1016/j.jalgebra.2011.06.003
  21. Towers, D.A., Varea, V.R., 10.1016/j.jalgebra.2006.11.034, Journal of Algebra, 312, 2, 2007, 891-901, Elsevier, (2007) MR2333190DOI10.1016/j.jalgebra.2006.11.034
  22. Towers, D.A., Varea, V.R., 10.1080/00927872.2011.643667, Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis, (2013) MR3044418DOI10.1080/00927872.2011.643667
  23. Winter, D.J., Abstract Lie Algebras, 1972, M.I.T. Press, Cambridge, Mass., (1972) MR0332905

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.