The reduced ideals of a special order in a pure cubic number field

Abdelmalek Azizi; Jamal Benamara; Moulay Chrif Ismaili; Mohammed Talbi

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 3, page 171-182
  • ISSN: 0044-8753

Abstract

top
Let K = ( θ ) be a pure cubic field, with θ 3 = D , where D is a cube-free integer. We will determine the reduced ideals of the order 𝒪 = [ θ ] of K which coincides with the maximal order of K in the case where D is square-free and ¬ ± 1 ( mod 9 ) .

How to cite

top

Azizi, Abdelmalek, et al. "The reduced ideals of a special order in a pure cubic number field." Archivum Mathematicum 056.3 (2020): 171-182. <http://eudml.org/doc/296993>.

@article{Azizi2020,
abstract = {Let $K=\mathbb \{Q\}(\theta )$ be a pure cubic field, with $\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\mathcal \{O\}=\mathbb \{Z\}[\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\lnot \equiv \pm 1\hspace\{4.44443pt\}(\@mod \; 9)$.},
author = {Azizi, Abdelmalek, Benamara, Jamal, Ismaili, Moulay Chrif, Talbi, Mohammed},
journal = {Archivum Mathematicum},
keywords = {cubic field; reduced ideal},
language = {eng},
number = {3},
pages = {171-182},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The reduced ideals of a special order in a pure cubic number field},
url = {http://eudml.org/doc/296993},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Azizi, Abdelmalek
AU - Benamara, Jamal
AU - Ismaili, Moulay Chrif
AU - Talbi, Mohammed
TI - The reduced ideals of a special order in a pure cubic number field
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 171
EP - 182
AB - Let $K=\mathbb {Q}(\theta )$ be a pure cubic field, with $\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\mathcal {O}=\mathbb {Z}[\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\lnot \equiv \pm 1\hspace{4.44443pt}(\@mod \; 9)$.
LA - eng
KW - cubic field; reduced ideal
UR - http://eudml.org/doc/296993
ER -

References

top
  1. Alaca, S., Williams, K.S., Introductory algebraic number theory, Cambridge University Press, Cambridge, UK, 2004. (2004) MR2031707
  2. Buchmann, J.A., Scheidler, R., Williams, H.C., Implementation of a key exchange protocol using real quadratic fields, Advances in Cryptography–EUROCRYPT'90. EUROCRYPT 1990. Lecture Notes in Computer Science (Damgård, I.B., ed.), vol. 473, Springer, Berlin, Heidelberg, 1991, pp. 98–109. (1991) MR1102474
  3. Buchmann, J.A., Williams, H.C., 10.1007/BF02351719, J. Cryptology 1 (1988), 107–118. (1988) MR0972575DOI10.1007/BF02351719
  4. Buchmann, J.A., Williams, H.C., 10.1090/S0025-5718-1988-0929554-6, Math. Comp. 50 (182) (1988), 569–579. (1988) MR0929554DOI10.1090/S0025-5718-1988-0929554-6
  5. Buchmann, J.A., Williams, H.C., A sub exponential algorithm for the determination of class groups and regulators of algebraic number fields, Seminaire de Theorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhauser Boston, Boston, MA, 1990, pp. 27–41. (1990) MR1104698
  6. Cohen, H., A course in computational algebraic number theory, Springer–Verlag, 1996. (1996) MR1228206
  7. Jacobs, G.T., Reduced ideals and periodic sequences in pure cubic fields, Ph.D. thesis, University of North Texas, 2015, August 2015, https://digital.library.unt.edu/ark:/67531/metadc804842. (2015) MR3503469
  8. Mollin, R., Quadratics, CRC Press, Inc., Boca Raton, Florida, 1996. (1996) Zbl0888.11041MR1383823
  9. Neukirch, J., Algebraic Number Theory, Springer–Verlag Berlin, Heidelberg, 1999. (1999) Zbl0956.11021MR1697859
  10. Payan, J., Sur le groupe des classes d’un corps quadratique, Cours de l'institut Fourier 7 (1972), 2–30. (1972) 
  11. Prabpayak, C., Orders in pure cubic number fields, Ph.D. thesis, Univ. Graz. Grazer Math. Ber. 361, 2014. (2014) MR3364308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.