Linear complementarity problems and bi-linear games
Gokulraj Sengodan; Chandrashekaran Arumugasamy
Applications of Mathematics (2020)
- Volume: 65, Issue: 5, page 665-675
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSengodan, Gokulraj, and Arumugasamy, Chandrashekaran. "Linear complementarity problems and bi-linear games." Applications of Mathematics 65.5 (2020): 665-675. <http://eudml.org/doc/296998>.
@article{Sengodan2020,
abstract = {In this paper, we define bi-linear games as a generalization of the bimatrix games. In particular, we generalize concepts like the value and equilibrium of a bimatrix game to the general linear transformations defined on a finite dimensional space. For a special type of $\{\bf Z\}$-transformation we observe relationship between the values of the linear and bi-linear games. Using this relationship, we prove some known classical results in the theory of linear complementarity problems for this type of $\{\bf Z\}$-transformations.},
author = {Sengodan, Gokulraj, Arumugasamy, Chandrashekaran},
journal = {Applications of Mathematics},
keywords = {bimatrix game; nash equilibrium; $\{\bf Z\}$-transformation; semi positive map},
language = {eng},
number = {5},
pages = {665-675},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear complementarity problems and bi-linear games},
url = {http://eudml.org/doc/296998},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Sengodan, Gokulraj
AU - Arumugasamy, Chandrashekaran
TI - Linear complementarity problems and bi-linear games
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 5
SP - 665
EP - 675
AB - In this paper, we define bi-linear games as a generalization of the bimatrix games. In particular, we generalize concepts like the value and equilibrium of a bimatrix game to the general linear transformations defined on a finite dimensional space. For a special type of ${\bf Z}$-transformation we observe relationship between the values of the linear and bi-linear games. Using this relationship, we prove some known classical results in the theory of linear complementarity problems for this type of ${\bf Z}$-transformations.
LA - eng
KW - bimatrix game; nash equilibrium; ${\bf Z}$-transformation; semi positive map
UR - http://eudml.org/doc/296998
ER -
References
top- Berman, A., Plemmons, R. J., 10.1137/1.9781611971262, Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). (1994) Zbl0815.15016MR1298430DOI10.1137/1.9781611971262
- Cottle, R. W., Pang, J.-S., Stone, R. E., 10.1137/1.9780898719000, Computer Science and Scientific Computing. Academic Press, Boston (1992). (1992) Zbl0757.90078MR1150683DOI10.1137/1.9780898719000
- Ferris, M. C., Pang, J. S., 10.1137/S0036144595285963, SIAM Rev. 39 (1997), 669-713. (1997) Zbl0891.90158MR1491052DOI10.1137/S0036144595285963
- Fiedler, M., Pták, V., 10.21136/CMJ.1962.100526, Czech. Math. J. 12 (1962), 382-400. (1962) Zbl0131.24806MR0142565DOI10.21136/CMJ.1962.100526
- Gale, D., Nikaidô, H., 10.1007/BF01360282, Math. Ann. 159 (1965), 81-93. (1965) Zbl0158.04903MR0204592DOI10.1007/BF01360282
- Gowda, M. S., Ravindran, G., 10.1016/j.laa.2014.11.032, Linear Algebra Appl. 469 (2015), 440-463. (2015) Zbl1309.91008MR3299071DOI10.1016/j.laa.2014.11.032
- Gowda, M. S., Tao, J., 10.1007/s10107-007-0159-8, Math. Program. 117 (2009), 195-221. (2009) Zbl1167.90022MR2421305DOI10.1007/s10107-007-0159-8
- Isac, G., 10.1007/BFb0084653, Lecture Notes in Mathematics 1528. Springer, Berlin (1992). (1992) Zbl0795.90072MR1222647DOI10.1007/BFb0084653
- Kaneko, I., 10.1007/BFb0120786, Math. Program. Study 7 (1978), 120-141. (1978) Zbl0378.90054MR0483316DOI10.1007/BFb0120786
- Kaneko, I., 10.1016/0024-3795(78)90045-9, Linear Algebra Appl. 20 (1978), 111-129. (1978) Zbl0382.15011MR0480554DOI10.1016/0024-3795(78)90045-9
- Karamardian, S., 10.1007/BF01584538, Math. Program. 2 (1972), 107-129. (1972) Zbl0247.90058MR295762DOI10.1007/BF01584538
- Murty, K. G., Linear Complementarity, Linear and Nonlinear Programming, Sigma Series in Applied Mathematics 3. Heldermann Verlag, Berlin (1988). (1988) Zbl0634.90037MR0949214
- Nikaidô, H., 10.1016/S0076-5392(08)63326-3, Mathematics in Science and Engineering 51. Academic Press, New York (1968). (1968) Zbl0172.44502MR0277233DOI10.1016/S0076-5392(08)63326-3
- Orlitzky, M. J., Positive Operators, Z-Operators, Lyapunov Rank, and Linear Games on Closed Convex Cones: Ph.D. Thesis, University of Maryland, Baltimore County (2017). (2017) MR3697664
- Parthasarathy, T., Raghavan, T. E. S., Some Topics in Two-Person Games, American Elsevier, New York (1971). (1971) Zbl0225.90049MR0277260
- Schneider, H., Vidyasagar, M., 10.1137/0707041, SIAM J. Numer. Anal. 7 (1970), 508-519. (1970) Zbl0245.15008MR0277550DOI10.1137/0707041
- Varga, R. S., 10.1007/978-3-642-05156-2, Springer Series in Computational Mathematics 27. Springer, Berlin (2000). (2000) Zbl0998.65505MR1753713DOI10.1007/978-3-642-05156-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.