A variation of Thompson's conjecture for the symmetric groups
Mahdi Abedei; Ali Iranmanesh; Farrokh Shirjian
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 743-755
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbedei, Mahdi, Iranmanesh, Ali, and Shirjian, Farrokh. "A variation of Thompson's conjecture for the symmetric groups." Czechoslovak Mathematical Journal 70.3 (2020): 743-755. <http://eudml.org/doc/297006>.
@article{Abedei2020,
abstract = {Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson’s conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong \{\rm Sym\}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N(\{\rm Sym\}(p+1))$, then $G \cong \{\rm Sym\}(p+1)$.},
author = {Abedei, Mahdi, Iranmanesh, Ali, Shirjian, Farrokh},
journal = {Czechoslovak Mathematical Journal},
keywords = {Thompson's conjecture; conjugacy class size; symmetric groups; prime graph},
language = {eng},
number = {3},
pages = {743-755},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A variation of Thompson's conjecture for the symmetric groups},
url = {http://eudml.org/doc/297006},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Abedei, Mahdi
AU - Iranmanesh, Ali
AU - Shirjian, Farrokh
TI - A variation of Thompson's conjecture for the symmetric groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 743
EP - 755
AB - Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson’s conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
LA - eng
KW - Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
UR - http://eudml.org/doc/297006
ER -
References
top- Ahanjideh, N., 10.1016/j.jalgebra.2011.05.043, J. Algebra 344 (2011), 205-228. (2011) Zbl1247.20015MR2831937DOI10.1016/j.jalgebra.2011.05.043
- Asboei, A. K., Darafsheh, M. R., Mohammadyari, R., 10.14492/hokmj/1520928059, Hokkaido Math. J. 47 (2018), 25-32. (2018) Zbl06853590MR3773724DOI10.14492/hokmj/1520928059
- Asboei, A. K., Mohammadyari, R., 10.1007/s10587-016-0239-0, Czech. Math. J. 66 (2016), 63-70. (2016) Zbl1374.20008MR3483222DOI10.1007/s10587-016-0239-0
- Asboei, A. K., Mohammadyari, R., 10.1142/S0219498816500213, J. Algebra Appl. 15 (2016), Article ID 1650021. (2016) Zbl1336.20026MR3405720DOI10.1142/S0219498816500213
- Asboei, A. K., Mohammadyari, R., 10.1515/ausm-2017-0001, Acta Univ. Sapientiae, Math. 9 (2017), 5-12. (2017) Zbl1370.20013MR3684822DOI10.1515/ausm-2017-0001
- Chen, G., On Thompson's conjecture for sporadic groups, Proc. of the First Academic Annual Meeting of Youth Fujian Science and Technology Publishing House, Fuzhou (1992), 1-6 Chinese. (1992) MR1252902
- Chen, G., On Thompson's Conjecture, PhD Thesis, Sichuan University, Chengdu (1994). (1994) MR1409982
- Chen, G., On the structure of Frobenius group and 2-Frobenius group, J. Southwest China Normal. Univ. 20 (1995), 485-487 Chinese. (1995)
- Chen, G., 10.1006/jabr.1996.0320, J. Algebra 185 (1996), 184-193. (1996) Zbl0861.20018MR1409982DOI10.1006/jabr.1996.0320
- Chen, G., 10.1006/jabr.1998.7839, J. Algebra 218 (1999), 276-285. (1999) Zbl0931.20020MR1704687DOI10.1006/jabr.1998.7839
- Chen, Y., Chen, G., Li, J., 10.1007/s40840-014-0003-2, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 51-72. (2015) Zbl1406.20016MR3394038DOI10.1007/s40840-014-0003-2
- Gorenstein, D., Finite Groups, Chelsea Publishing, New York (1980). (1980) Zbl0463.20012MR0569209
- Iranmanesh, A., Alavi, S. H., Khosravi, B., 10.1016/S0022-4049(01)00113-X, J. Pure Appl. Algebra 170 (2002), 243-254. (2002) Zbl1001.20005MR1904845DOI10.1016/S0022-4049(01)00113-X
- Kondrat'ev, A. S., Mazurov, V. D., 10.1007/BF02674599, Sib. Math. J. 41 (2000), 294-302 English. Russian original translation from Sib. Mat. Zh. 41 2000 359-369. (2000) Zbl0956.20007MR1762188DOI10.1007/BF02674599
- Li, J. B., Finite Groups with Special Conjugacy Class Sizes or Generalized Permutable Subgroups, Ph.D. Thesis, Southwest University, Chongqing (2012). (2012)
- Mazurov, V. D., (eds.), E. I. Khukhro, The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences, Siberian Div., Novosibirsk (2018). (2018) Zbl1372.20001MR3408705
- Shi, W. J., Bi, J. X., A new characterization of the alternating groups, Southeast Asian Bull. Math. 16 (1992), 81-90. (1992) Zbl0790.20030MR1173612
- Vasil'ev, A. V., On Thompson's conjecture, Sib. Elektron. Mat. Izv. 6 (2009), 457-464. (2009) Zbl1289.20057MR2586699
- Williams, J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), 487-513. (1981) Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.