A variation of Thompson's conjecture for the symmetric groups

Mahdi Abedei; Ali Iranmanesh; Farrokh Shirjian

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 743-755
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group and let N ( G ) denote the set of conjugacy class sizes of G . Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N ( G ) = N ( S ) , then G S . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G Sym ( p + 1 ) if and only if | G | = ( p + 1 ) ! and G has a special conjugacy class of size ( p + 1 ) ! / p , where p > 5 is a prime number. Consequently, if G is a centerless group with N ( G ) = N ( Sym ( p + 1 ) ) , then G Sym ( p + 1 ) .

How to cite

top

Abedei, Mahdi, Iranmanesh, Ali, and Shirjian, Farrokh. "A variation of Thompson's conjecture for the symmetric groups." Czechoslovak Mathematical Journal 70.3 (2020): 743-755. <http://eudml.org/doc/297006>.

@article{Abedei2020,
abstract = {Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson’s conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong \{\rm Sym\}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N(\{\rm Sym\}(p+1))$, then $G \cong \{\rm Sym\}(p+1)$.},
author = {Abedei, Mahdi, Iranmanesh, Ali, Shirjian, Farrokh},
journal = {Czechoslovak Mathematical Journal},
keywords = {Thompson's conjecture; conjugacy class size; symmetric groups; prime graph},
language = {eng},
number = {3},
pages = {743-755},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A variation of Thompson's conjecture for the symmetric groups},
url = {http://eudml.org/doc/297006},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Abedei, Mahdi
AU - Iranmanesh, Ali
AU - Shirjian, Farrokh
TI - A variation of Thompson's conjecture for the symmetric groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 743
EP - 755
AB - Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson’s conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
LA - eng
KW - Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
UR - http://eudml.org/doc/297006
ER -

References

top
  1. Ahanjideh, N., 10.1016/j.jalgebra.2011.05.043, J. Algebra 344 (2011), 205-228. (2011) Zbl1247.20015MR2831937DOI10.1016/j.jalgebra.2011.05.043
  2. Asboei, A. K., Darafsheh, M. R., Mohammadyari, R., 10.14492/hokmj/1520928059, Hokkaido Math. J. 47 (2018), 25-32. (2018) Zbl06853590MR3773724DOI10.14492/hokmj/1520928059
  3. Asboei, A. K., Mohammadyari, R., 10.1007/s10587-016-0239-0, Czech. Math. J. 66 (2016), 63-70. (2016) Zbl1374.20008MR3483222DOI10.1007/s10587-016-0239-0
  4. Asboei, A. K., Mohammadyari, R., 10.1142/S0219498816500213, J. Algebra Appl. 15 (2016), Article ID 1650021. (2016) Zbl1336.20026MR3405720DOI10.1142/S0219498816500213
  5. Asboei, A. K., Mohammadyari, R., 10.1515/ausm-2017-0001, Acta Univ. Sapientiae, Math. 9 (2017), 5-12. (2017) Zbl1370.20013MR3684822DOI10.1515/ausm-2017-0001
  6. Chen, G., On Thompson's conjecture for sporadic groups, Proc. of the First Academic Annual Meeting of Youth Fujian Science and Technology Publishing House, Fuzhou (1992), 1-6 Chinese. (1992) MR1252902
  7. Chen, G., On Thompson's Conjecture, PhD Thesis, Sichuan University, Chengdu (1994). (1994) MR1409982
  8. Chen, G., On the structure of Frobenius group and 2-Frobenius group, J. Southwest China Normal. Univ. 20 (1995), 485-487 Chinese. (1995) 
  9. Chen, G., 10.1006/jabr.1996.0320, J. Algebra 185 (1996), 184-193. (1996) Zbl0861.20018MR1409982DOI10.1006/jabr.1996.0320
  10. Chen, G., 10.1006/jabr.1998.7839, J. Algebra 218 (1999), 276-285. (1999) Zbl0931.20020MR1704687DOI10.1006/jabr.1998.7839
  11. Chen, Y., Chen, G., Li, J., 10.1007/s40840-014-0003-2, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 51-72. (2015) Zbl1406.20016MR3394038DOI10.1007/s40840-014-0003-2
  12. Gorenstein, D., Finite Groups, Chelsea Publishing, New York (1980). (1980) Zbl0463.20012MR0569209
  13. Iranmanesh, A., Alavi, S. H., Khosravi, B., 10.1016/S0022-4049(01)00113-X, J. Pure Appl. Algebra 170 (2002), 243-254. (2002) Zbl1001.20005MR1904845DOI10.1016/S0022-4049(01)00113-X
  14. Kondrat'ev, A. S., Mazurov, V. D., 10.1007/BF02674599, Sib. Math. J. 41 (2000), 294-302 English. Russian original translation from Sib. Mat. Zh. 41 2000 359-369. (2000) Zbl0956.20007MR1762188DOI10.1007/BF02674599
  15. Li, J. B., Finite Groups with Special Conjugacy Class Sizes or Generalized Permutable Subgroups, Ph.D. Thesis, Southwest University, Chongqing (2012). (2012) 
  16. Mazurov, V. D., (eds.), E. I. Khukhro, The Kourovka Notebook: Unsolved Problems in Group Theory, Institute of Mathematics, Russian Academy of Sciences, Siberian Div., Novosibirsk (2018). (2018) Zbl1372.20001MR3408705
  17. Shi, W. J., Bi, J. X., A new characterization of the alternating groups, Southeast Asian Bull. Math. 16 (1992), 81-90. (1992) Zbl0790.20030MR1173612
  18. Vasil'ev, A. V., On Thompson's conjecture, Sib. Elektron. Mat. Izv. 6 (2009), 457-464. (2009) Zbl1289.20057MR2586699
  19. Williams, J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), 487-513. (1981) Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.