Measure-geometric Laplacians for partially atomic measures

Marc Kesseböhmer; Tony Samuel; Hendrik Weyer

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 3, page 313-335
  • ISSN: 0010-2628

Abstract

top
Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure η supported on a compact subset of U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator η and a second order differential operator Δ η , with respect to η . We generalize this approach to measures of the form η : = ν + δ , where ν is non-atomic and δ is finitely supported. We determine analytic properties of η and Δ η and show that Δ η is a densely defined, unbounded, linear, self-adjoint operator with compact resolvent. Moreover, we give a systematic way to calculate the eigenvalues and eigenfunctions of Δ η . For two leading examples, we determine the eigenvalues and the eigenfunctions, as well as the asymptotic growth rates of the eigenvalue counting function.

How to cite

top

Kesseböhmer, Marc, Samuel, Tony, and Weyer, Hendrik. "Measure-geometric Laplacians for partially atomic measures." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 313-335. <http://eudml.org/doc/297013>.

@article{Kesseböhmer2020,
abstract = {Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure $\eta $ supported on a compact subset of $\mathbb \{R\}$ U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator $\nabla _\{\eta \}$ and a second order differential operator $\Delta _\{\eta \}$, with respect to $\eta $. We generalize this approach to measures of the form $\eta := \nu + \delta $, where $\nu $ is non-atomic and $\delta $ is finitely supported. We determine analytic properties of $\nabla _\{\eta \}$ and $\Delta _\{\eta \}$ and show that $\Delta _\{\eta \}$ is a densely defined, unbounded, linear, self-adjoint operator with compact resolvent. Moreover, we give a systematic way to calculate the eigenvalues and eigenfunctions of $\Delta _\{\eta \}$. For two leading examples, we determine the eigenvalues and the eigenfunctions, as well as the asymptotic growth rates of the eigenvalue counting function.},
author = {Kesseböhmer, Marc, Samuel, Tony, Weyer, Hendrik},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Kreĭn--Feller operator; spectral asymptotics; harmonic analysis},
language = {eng},
number = {3},
pages = {313-335},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Measure-geometric Laplacians for partially atomic measures},
url = {http://eudml.org/doc/297013},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Kesseböhmer, Marc
AU - Samuel, Tony
AU - Weyer, Hendrik
TI - Measure-geometric Laplacians for partially atomic measures
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 313
EP - 335
AB - Motivated by the fundamental theorem of calculus, and based on the works of W. Feller as well as M. Kac and M. G. Kreĭn, given an atomless Borel probability measure $\eta $ supported on a compact subset of $\mathbb {R}$ U. Freiberg and M. Zähle introduced a measure-geometric approach to define a first order differential operator $\nabla _{\eta }$ and a second order differential operator $\Delta _{\eta }$, with respect to $\eta $. We generalize this approach to measures of the form $\eta := \nu + \delta $, where $\nu $ is non-atomic and $\delta $ is finitely supported. We determine analytic properties of $\nabla _{\eta }$ and $\Delta _{\eta }$ and show that $\Delta _{\eta }$ is a densely defined, unbounded, linear, self-adjoint operator with compact resolvent. Moreover, we give a systematic way to calculate the eigenvalues and eigenfunctions of $\Delta _{\eta }$. For two leading examples, we determine the eigenvalues and the eigenfunctions, as well as the asymptotic growth rates of the eigenvalue counting function.
LA - eng
KW - Kreĭn--Feller operator; spectral asymptotics; harmonic analysis
UR - http://eudml.org/doc/297013
ER -

References

top
  1. Arzt P., 10.4171/JFG/18, J. Fractal Geom. 2 (2015), no. 2, 115–169. MR3353090DOI10.4171/JFG/18
  2. Beals R., Greiner P. C., 10.1142/S0219530509001335, Anal. Appl. (Singap.) 7 (2009), no. 2, 131–183. MR2513598DOI10.1142/S0219530509001335
  3. Berry M. V., 10.1007/978-3-642-67363-4_7, Structural Stability in Physics, Proc. Internat. Symposia Appl. Catastrophe Theory and Topological Concepts in Phys., Inst. Inform. Sci., Univ. Tübingen, 1978, Springer Ser. Synergetics, 4, Springer, Berlin, 1979, pages 51–53. MR0556688DOI10.1007/978-3-642-67363-4_7
  4. Berry M. V., Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals, Geometry of the Laplace operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, 1980, pages 13–28. MR0573427
  5. Biggs N., Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. Zbl0797.05032MR1271140
  6. Ehnes T., Stochastic heat equations defined by fractal Laplacians on Cantor-like sets, available at arXiv: 1902.02175v2 [math.PR] (2019), 27 pages. 
  7. Feller W., 10.1215/ijm/1255380673, Illinois J. Math. 1 (1957), 459–504. MR0092046DOI10.1215/ijm/1255380673
  8. Freiberg U., A survey on measure geometric Laplacians on Cantor like sets, Wavelet and fractal methods in science and engineering, Part I., Arab. J. Sci. Eng. Sect. C Theme Issues 28 (2003), no. 1, 189–198. MR2030736
  9. Freiberg U., 10.1002/mana.200310102, Math. Nachr. 260 (2003), 34–47. MR2017701DOI10.1002/mana.200310102
  10. Freiberg U., 10.1515/form.2005.17.1.87, Forum Math. 17 (2005), no. 1, 87–104. MR2110540DOI10.1515/form.2005.17.1.87
  11. Freiberg U., Zähle M., 10.1023/A:1014085203265, Potential Anal. 16 (2002), no. 3, 265–277. MR1885763DOI10.1023/A:1014085203265
  12. Fujita T., A fractional dimension, self-similarity and a generalized diffusion operator, Probabilistic Methods in Mathematical Physics, Katata/Kyoto, 1985, Academic Press, Boston, 1987, pages 83–90. MR0933819
  13. Gordon C., Webb D., Wolpert S., 10.1007/BF01231320, Invent. Math. 110 (1992), no. 1, 1–22. MR1181812DOI10.1007/BF01231320
  14. Halmos P. R., Measure Theory, D. Van Nostrand Company, New York, 1950. Zbl0283.28001MR0033869
  15. Jin X., Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion, available at arXiv: 1705.01726v1 [math.PR] (2017), 23 pages. 
  16. Kac I. S., Kreĭn M. G., Criteria for the discreteness of the spectrum of a singular string, Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 2 (3), 136–153. MR0139804
  17. Kac M., 10.1080/00029890.1966.11970915, Amer. Math. Monthly 73 (1966), no. 4, part II, 1–23. MR0201237DOI10.1080/00029890.1966.11970915
  18. Kesseböhmer M., Niemann A., Samuel T., Weyer H., Generalised Kreĭn–Feller operators and Liouville Brownian motion via transformations of measure spaces, available at arXiv:1909.08832v2 [math.FA], (2019), 13 pages. 
  19. Kesseböhmer M., Samuel T., Weyer H., 10.1007/s00605-016-0906-0, Monatsh. Math. 181 (2016), no. 3, 643–655. MR3552804DOI10.1007/s00605-016-0906-0
  20. Kesseböhmer M., Samuel T., Weyer H., 10.1090/conm/731/14676, Horizons of Fractal Geometry and Complex Dimensions, Contemp. Math., 731, Amer. Math. Soc., Providence, 2019, pages 133–142. MR3989819DOI10.1090/conm/731/14676
  21. Kigami J., Lapidus M. L., 10.1007/s002200000326, Comm. Math. Phys. 217 (2001), no. 1, 165–180. MR1815029DOI10.1007/s002200000326
  22. Kotani S., Watanabe S., Kreĭn's spectral theory of strings and generalized diffusion processes, Functional analysis in Markov Processes, Katata/Kyoto, 1981, Lecture Notes in Math., 923, Springer, Berlin, 1982, pages 235–259. MR0661628
  23. Lapidus M. L., 10.1090/S0002-9947-1991-0994168-5, Trans. Amer. Math. Soc. 325 (1991), no. 2, 465–529. MR0994168DOI10.1090/S0002-9947-1991-0994168-5
  24. Lapidus M. L., Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl–Berry conjecture, Ordinary and Partial Differential Equations, Vol. IV, Dundee, 1992, Pitman Res. Notes Math. Ser., 289, Longman Sci. Tech., Harlow, 1993, pages 126–209. MR1234502
  25. Lapidus M. L., Pomerance C., Fonction zêta de Riemann et conjecture de Weyl–Berry pour les tambours fractals, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 343–348 (French. English summary). MR1046509
  26. Lapidus M. L., Pomerance C., The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture for fractal drums, Proc. London Math. Soc. (3) 66 (1993), no. 1, 41–69. MR1189091
  27. Lapidus M. L., Pomerance C., 10.1017/S0305004100074053, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 167–178. MR1356166DOI10.1017/S0305004100074053
  28. Milnor J., 10.1073/pnas.51.4.542, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR0162204DOI10.1073/pnas.51.4.542
  29. Reed M., Simon B., Methods of Modern Mathematical Physics. I, Functional analysis, Academic Press, Harcourt Brace Jovanovich Publishers, New York, 1980. MR0493421
  30. Rhodes R., Vargas V., 10.1007/s00023-013-0308-y, Ann. Henri Poincaré 15 (2014), no. 12, 2281–2298. MR3272822DOI10.1007/s00023-013-0308-y
  31. Urakawa H., 10.24033/asens.1433, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 441–456. MR0690649DOI10.24033/asens.1433
  32. Weyl H., Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung, J. Reine Angew. Math. 141 (1912), 1–11 (German). MR1580843

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.