Bounded domains which are isospectral but not congruent

Hajime Urakawa

Annales scientifiques de l'École Normale Supérieure (1982)

  • Volume: 15, Issue: 3, page 441-456
  • ISSN: 0012-9593

How to cite

top

Urakawa, Hajime. "Bounded domains which are isospectral but not congruent." Annales scientifiques de l'École Normale Supérieure 15.3 (1982): 441-456. <http://eudml.org/doc/82102>.

@article{Urakawa1982,
author = {Urakawa, Hajime},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Neumann problem; Dirichlet problem; inverse spectral problem; Laplacian on functions},
language = {eng},
number = {3},
pages = {441-456},
publisher = {Elsevier},
title = {Bounded domains which are isospectral but not congruent},
url = {http://eudml.org/doc/82102},
volume = {15},
year = {1982},
}

TY - JOUR
AU - Urakawa, Hajime
TI - Bounded domains which are isospectral but not congruent
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 3
SP - 441
EP - 456
LA - eng
KW - Neumann problem; Dirichlet problem; inverse spectral problem; Laplacian on functions
UR - http://eudml.org/doc/82102
ER -

References

top
  1. [A] S. AGMON, Lecture Notes on Elliptic Boundary Value Problems (van Nostrand Company, Toronto-Princeton-New York-London, 1965). Zbl0142.37401MR31 #2504
  2. [B1] P. BÉRARD, Spectres et groupes cristallographiques I: domaines euclidiens (Invent. Math., Vol. 58, 1980, pp. 179-199). Zbl0434.35068MR82e:58097a
  3. [B2] P. BÉRARD, Remarque sur la conjecture de Weyl (to appear in Compositio Math.). 
  4. [B.B.] P. BÉRARD and G. BESSON, Spectres et groupes cristallographiques II: domaines sphériques (Ann. Inst. Fourier, Grenoble, Vol. 30, No. 3, 1980, pp. 237-248). Zbl0426.35073MR82e:58097b
  5. [Br] M. BERGER, Eigenvalues of the Laplacian (Amer. Math. Soc., Proc. Pure Math., Vol. 16, 1970, pp. 121-125). Zbl0205.40102MR41 #9141
  6. [B.G.M.] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., No. 194, Springer-Verlag, Berlin-Heiderberg-New York, 1970). Zbl0223.53034MR43 #8025
  7. [B.N.] N. BOURBAKI, Groupes et algèbres de Lie, Chapitres 4 à 6, Hermann, Paris, 1968. 
  8. F. H. BROWNELL, Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space (J. Math. Mech., Vol. 6, 1957, pp. 119-166). Zbl0084.30901MR18,903c
  9. [C] T. CARLEMAN, Über die asymptotische Verteilung der Eigenwerte partieller Differential gleichungen (Ber. der Sachs. Acad. d. Wiss. Leipzig, Vol. 88, 1936, pp. 119-132). Zbl0017.11402JFM62.0543.02
  10. [E] N. EJIRI, A Construction of Non-Flat Compact Irreducible Riemannian Manifolds which are Isospectral But not Isometric (Math. Z., Vol. 168, 1979, pp. 207-212). Zbl0396.53022MR80h:58050
  11. [F] G. FABER, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt (Sitz. ber. bayer. Acad. Wiss., 1923, pp. 169-172). Zbl49.0342.03JFM49.0342.03
  12. [Gd] P. GRISVARD, Boundary Value Problems in Non-Smooth Domains (Lecture Notes, No. 19, Univ. Maryland, Depart. Math., College Park, 1980). 
  13. [G] D. GROMES, Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators fur Gebiete auf der Kugeloberfläche (Math. Z., Vol. 94, 1966, pp. 110-121). Zbl0146.35002MR33 #7718
  14. [I] A. IKEDA, On Lens Spaces which are Isospectral But not Isometric (Ann. scient. Éc. Norm. Sup., 4e série, t. 13, 1980, pp. 303-315). Zbl0451.58037MR83a:58091
  15. [K] M. KAC, Can One Hear the Shape of a Drum? (Amer. Math. Monthly, Vol. 73, 1966, pp. 1-23). Zbl0139.05603MR34 #1121
  16. [Kr] E. KRAHN, Ueber Minimaleigenschaften der Kugel in drei und mehr Dimensionen (Acta Comm. Univ. Tartu (Dorpat), Vol. 9, 1926, p. 1-144). Zbl52.0510.03JFM52.0510.03
  17. [M.S.] H. P. MCKEAN and I. M. SINGER, Curvature and the Eigenvalues of the Laplacian (J. Diff. Geometry, Vol. 1, 1967, pp. 43-69). Zbl0198.44301MR36 #828
  18. [M] J. MILNOR, Eigenvalues of the Laplace Operator on Certain Manifolds (Proc. Nat. Acad. Sc., Vol. 51, 1964, p. 542). Zbl0124.31202MR28 #5403
  19. [P] H. PRÜFER, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Functionen (Math. Ann., Vol. 95, 1926, pp. 499-518). Zbl52.0455.01JFM52.0455.01
  20. [V] M. F. VIGNÉRAS, Variétés riemanniennes isospectrales et non isométriques (Ann. Math., Vol. 112, 1980, pp. 21-32). Zbl0445.53026MR82b:58102
  21. [Wr] H. F. WEINBERGER, An Isoperimetric Inequality for the N-dimensional Free Membrane Problem (J. Rat. Mech. Anal., Vol. 5, 1956, pp. 533-536). Zbl0071.09902MR18,63c
  22. [W] H. WEYL, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalten elastische Körpers (Rendiconti. Circ. Math. Palermo, Vol. 39, 1915, pp. 1-50). Zbl45.1016.02JFM45.1016.02
  23. [Yau] S. T. YAU, Problem section, Institute for Advanced Study, Princeton (to appear in Annals of Math. Studies). 
  24. [Y] K. YOSIDA, Methods of Solving Differential Equations (in Japanese), 2nd ed. (Iwanami, Tokyo, 1978). 

Citations in EuDML Documents

top
  1. Marc Kesseböhmer, Tony Samuel, Hendrik Weyer, Measure-geometric Laplacians for partially atomic measures
  2. Peter Buser, Isospectral Riemann surfaces
  3. J. Fleckinger, Comportement asymptotique des valeurs propres du laplacien sur un ouvert à bord fractal
  4. Adam Korányi, K. Brenda MacGibbon, Asymptotically minimax estimation of order-constrained parameters and eigenfunctions of the laplacian on the ball
  5. Pierre Bérard, Variétés riemanniennes isospectrales non isométriques

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.