Bounded domains which are isospectral but not congruent
Annales scientifiques de l'École Normale Supérieure (1982)
- Volume: 15, Issue: 3, page 441-456
- ISSN: 0012-9593
Access Full Article
topHow to cite
topUrakawa, Hajime. "Bounded domains which are isospectral but not congruent." Annales scientifiques de l'École Normale Supérieure 15.3 (1982): 441-456. <http://eudml.org/doc/82102>.
@article{Urakawa1982,
author = {Urakawa, Hajime},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Neumann problem; Dirichlet problem; inverse spectral problem; Laplacian on functions},
language = {eng},
number = {3},
pages = {441-456},
publisher = {Elsevier},
title = {Bounded domains which are isospectral but not congruent},
url = {http://eudml.org/doc/82102},
volume = {15},
year = {1982},
}
TY - JOUR
AU - Urakawa, Hajime
TI - Bounded domains which are isospectral but not congruent
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 3
SP - 441
EP - 456
LA - eng
KW - Neumann problem; Dirichlet problem; inverse spectral problem; Laplacian on functions
UR - http://eudml.org/doc/82102
ER -
References
top- [A] S. AGMON, Lecture Notes on Elliptic Boundary Value Problems (van Nostrand Company, Toronto-Princeton-New York-London, 1965). Zbl0142.37401MR31 #2504
- [B1] P. BÉRARD, Spectres et groupes cristallographiques I: domaines euclidiens (Invent. Math., Vol. 58, 1980, pp. 179-199). Zbl0434.35068MR82e:58097a
- [B2] P. BÉRARD, Remarque sur la conjecture de Weyl (to appear in Compositio Math.).
- [B.B.] P. BÉRARD and G. BESSON, Spectres et groupes cristallographiques II: domaines sphériques (Ann. Inst. Fourier, Grenoble, Vol. 30, No. 3, 1980, pp. 237-248). Zbl0426.35073MR82e:58097b
- [Br] M. BERGER, Eigenvalues of the Laplacian (Amer. Math. Soc., Proc. Pure Math., Vol. 16, 1970, pp. 121-125). Zbl0205.40102MR41 #9141
- [B.G.M.] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété riemannienne (Lecture Notes in Math., No. 194, Springer-Verlag, Berlin-Heiderberg-New York, 1970). Zbl0223.53034MR43 #8025
- [B.N.] N. BOURBAKI, Groupes et algèbres de Lie, Chapitres 4 à 6, Hermann, Paris, 1968.
- F. H. BROWNELL, Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space (J. Math. Mech., Vol. 6, 1957, pp. 119-166). Zbl0084.30901MR18,903c
- [C] T. CARLEMAN, Über die asymptotische Verteilung der Eigenwerte partieller Differential gleichungen (Ber. der Sachs. Acad. d. Wiss. Leipzig, Vol. 88, 1936, pp. 119-132). Zbl0017.11402JFM62.0543.02
- [E] N. EJIRI, A Construction of Non-Flat Compact Irreducible Riemannian Manifolds which are Isospectral But not Isometric (Math. Z., Vol. 168, 1979, pp. 207-212). Zbl0396.53022MR80h:58050
- [F] G. FABER, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt (Sitz. ber. bayer. Acad. Wiss., 1923, pp. 169-172). Zbl49.0342.03JFM49.0342.03
- [Gd] P. GRISVARD, Boundary Value Problems in Non-Smooth Domains (Lecture Notes, No. 19, Univ. Maryland, Depart. Math., College Park, 1980).
- [G] D. GROMES, Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators fur Gebiete auf der Kugeloberfläche (Math. Z., Vol. 94, 1966, pp. 110-121). Zbl0146.35002MR33 #7718
- [I] A. IKEDA, On Lens Spaces which are Isospectral But not Isometric (Ann. scient. Éc. Norm. Sup., 4e série, t. 13, 1980, pp. 303-315). Zbl0451.58037MR83a:58091
- [K] M. KAC, Can One Hear the Shape of a Drum? (Amer. Math. Monthly, Vol. 73, 1966, pp. 1-23). Zbl0139.05603MR34 #1121
- [Kr] E. KRAHN, Ueber Minimaleigenschaften der Kugel in drei und mehr Dimensionen (Acta Comm. Univ. Tartu (Dorpat), Vol. 9, 1926, p. 1-144). Zbl52.0510.03JFM52.0510.03
- [M.S.] H. P. MCKEAN and I. M. SINGER, Curvature and the Eigenvalues of the Laplacian (J. Diff. Geometry, Vol. 1, 1967, pp. 43-69). Zbl0198.44301MR36 #828
- [M] J. MILNOR, Eigenvalues of the Laplace Operator on Certain Manifolds (Proc. Nat. Acad. Sc., Vol. 51, 1964, p. 542). Zbl0124.31202MR28 #5403
- [P] H. PRÜFER, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Functionen (Math. Ann., Vol. 95, 1926, pp. 499-518). Zbl52.0455.01JFM52.0455.01
- [V] M. F. VIGNÉRAS, Variétés riemanniennes isospectrales et non isométriques (Ann. Math., Vol. 112, 1980, pp. 21-32). Zbl0445.53026MR82b:58102
- [Wr] H. F. WEINBERGER, An Isoperimetric Inequality for the N-dimensional Free Membrane Problem (J. Rat. Mech. Anal., Vol. 5, 1956, pp. 533-536). Zbl0071.09902MR18,63c
- [W] H. WEYL, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalten elastische Körpers (Rendiconti. Circ. Math. Palermo, Vol. 39, 1915, pp. 1-50). Zbl45.1016.02JFM45.1016.02
- [Yau] S. T. YAU, Problem section, Institute for Advanced Study, Princeton (to appear in Annals of Math. Studies).
- [Y] K. YOSIDA, Methods of Solving Differential Equations (in Japanese), 2nd ed. (Iwanami, Tokyo, 1978).
Citations in EuDML Documents
top- Marc Kesseböhmer, Tony Samuel, Hendrik Weyer, Measure-geometric Laplacians for partially atomic measures
- Peter Buser, Isospectral Riemann surfaces
- J. Fleckinger, Comportement asymptotique des valeurs propres du laplacien sur un ouvert à bord fractal
- Adam Korányi, K. Brenda MacGibbon, Asymptotically minimax estimation of order-constrained parameters and eigenfunctions of the laplacian on the ball
- Pierre Bérard, Variétés riemanniennes isospectrales non isométriques
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.