Robust PI-D controller design for descriptor systems using regional pole placement and/or H 2 performance

Vojtech Veselý; Ladislav Körösi

Kybernetika (2020)

  • Volume: 56, Issue: 4, page 810-820
  • ISSN: 0023-5954

Abstract

top
The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or H 2 criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or H 2 quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D’s D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples.

How to cite

top

Veselý, Vojtech, and Körösi, Ladislav. "Robust PI-D controller design for descriptor systems using regional pole placement and/or $H_2$ performance." Kybernetika 56.4 (2020): 810-820. <http://eudml.org/doc/297017>.

@article{Veselý2020,
abstract = {The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or $H_2$ criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or $H_2$ quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D’s D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples.},
author = {Veselý, Vojtech, Körösi, Ladislav},
journal = {Kybernetika},
keywords = {descriptor system; robust PI-D controller; state derivative feedback; output feedback; pole placement},
language = {eng},
number = {4},
pages = {810-820},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust PI-D controller design for descriptor systems using regional pole placement and/or $H_2$ performance},
url = {http://eudml.org/doc/297017},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Veselý, Vojtech
AU - Körösi, Ladislav
TI - Robust PI-D controller design for descriptor systems using regional pole placement and/or $H_2$ performance
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 810
EP - 820
AB - The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or $H_2$ criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or $H_2$ quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D’s D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples.
LA - eng
KW - descriptor system; robust PI-D controller; state derivative feedback; output feedback; pole placement
UR - http://eudml.org/doc/297017
ER -

References

top
  1. Bara, G. J., 10.1016/j.sysconle.2011.03.001, Systems Control Lett. 60 (2011), 356-364. MR2838901DOI10.1016/j.sysconle.2011.03.001
  2. Darouch, M., Ameto, F., Alma, M., 10.1016/j.automatica.2017.08.016, Automatika 86 (2017), 216-219. MR3711466DOI10.1016/j.automatica.2017.08.016
  3. Debeljkovic, D., Visnjic, N., Pjescic, M., The stability of linear continuous singular systems in the sense of Lyapunov: An overview., Sci. Techn. Rev. LVII (2007), 1, 51-64. MR2483390
  4. Fu, M., 10.1109/tac.2004.828311, IEEE Trans Automat. Control 49 (2004), 5, 855-857. MR2057831DOI10.1109/tac.2004.828311
  5. Hien, L. Van, Vu, L. H., Trinh, H., 10.1016/j.sysconle.2017.12.003, Systems Control Lett. 112 (2018), 42-50. MR3763875DOI10.1016/j.sysconle.2017.12.003
  6. Chadli, M., Daafouz, J., Darouch, M., 10.3182/20080706-5-kr-1001.01692, In: Proc. of 17th IFAC World Congress 2008, pp. 9999-10002. DOI10.3182/20080706-5-kr-1001.01692
  7. Chen, C., Liu, Y., 10.1109/icips.1997.672862, In: Proc. Inter. Conf. on Intelligent Processing Systems, Beijing, 1997. DOI10.1109/icips.1997.672862
  8. Chilali, M., Gahinet, P., 10.1109/9.486637, IEEE Trans. Automat. Control 41, 1996, 3, 358-365. MR1382985DOI10.1109/9.486637
  9. Chilali, M., Gahinet, P., Apkarian, P., 10.1109/9.811208, IEEE Trans. Automat. Control 44 (1999), 12, 2257-2269. MR1728961DOI10.1109/9.811208
  10. Ji, X., Su, H., Chu, J., 10.1007/s11768-006-5212-2, J. Control Theory Appl. 4 (2006), 361-366. MR2290104DOI10.1007/s11768-006-5212-2
  11. Kimura, H., 10.1109/tac.1977.1101520, IEEE Trans. Automa. Control 22 (1977), 3, 458-467. MR0465326DOI10.1109/tac.1977.1101520
  12. Krokavec, D., Filasova, A., 10.1109/cca.2015.7320862, IEEE Conference on Control Appllications, 2015. DOI10.1109/cca.2015.7320862
  13. Kucera, V., Souza, C. E., 10.1016/0005-1098(95)00048-2, Automatika 31 (1995), 9, 1357-1359. MR1349414DOI10.1016/0005-1098(95)00048-2
  14. Kuncevic, V. M., Lycak, M. M., Control Systems Design Using Lyapunov Function Approach (In Russian)., Nauka, Moscow 1977. 
  15. Lin, Ch., Chen, B., Shi, P., Yu, J. P., 10.1016/j.sysconle.2017.12.004, Systems Control Lett. 112 (2018), 31-35. MR3763873DOI10.1016/j.sysconle.2017.12.004
  16. Lin, Ch., Wang, J. L., Yang, G. H., Soh, C. B., 10.1109/9.788550, Trans. Automat. Control 44 (1999), 9, 1768-1773. MR1710126DOI10.1109/9.788550
  17. Masabuchi, I., Kamitane, Y., Ohara, A., Suda, N., 10.1016/s0005-1098(96)00193-8, Automatika 33 (1997), 4, 669-673. MR1448959DOI10.1016/s0005-1098(96)00193-8
  18. Peaucelle, D., Arzelier, D., Bachelier, D., Bernussou, J., 10.1016/s0167-6911(99)00119-x, Systems Control Lett. 40 (2000), 21-30. Zbl0977.93067MR1829071DOI10.1016/s0167-6911(99)00119-x
  19. Silva, M. S., deLima, T. P., 10.1016/s0024-3795(02)00569-4, Linear Algebra 364 (2003), 281-316. MR1971101DOI10.1016/s0024-3795(02)00569-4
  20. Takaba, K., Moriharu, N., Katayama, T., 10.1016/0167-6911(94)00041-s, Systems Control Lett. 24 (1995), 49-51. MR1307127DOI10.1016/0167-6911(94)00041-s
  21. Veselý, V., Körösi, L., 10.1109/tia.2019.2921282, IEEE Trans. Industry Appl. 55 (2019), 5, 5353-5359. DOI10.1109/tia.2019.2921282
  22. Veselý, V., Rosinová, D., 10.1002/asjc.559, Asian J. Control 5 (2013), 2, 469-478. MR3043456DOI10.1002/asjc.559
  23. Xu, S., Dooren, P. Van, Stefan, R., Lam, J., 10.1109/tac.2002.800651, IEEE Trans. Automat. Control (2002), 1-12. MR1911484DOI10.1109/tac.2002.800651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.