On left -biflat Banach algebras
Amir Sahami; Mehdi Rostami; Abdolrasoul Pourabbas
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 337-344
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSahami, Amir, Rostami, Mehdi, and Pourabbas, Abdolrasoul. "On left $\varphi $-biflat Banach algebras." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 337-344. <http://eudml.org/doc/297031>.
@article{Sahami2020,
abstract = {We study the notion of left $\varphi $-biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra $S(G)$ is left $\varphi $-biflat if and only if $G$ is amenable. Also we characterize left $\varphi $-biflatness of semigroup algebra $l^\{1\}(S)$ in terms of biflatness, when $S$ is a Clifford semigroup.},
author = {Sahami, Amir, Rostami, Mehdi, Pourabbas, Abdolrasoul},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {left $\varphi $-biflat; Segal algebra; semigroup algebra; locally compact group},
language = {eng},
number = {3},
pages = {337-344},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On left $\varphi $-biflat Banach algebras},
url = {http://eudml.org/doc/297031},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Sahami, Amir
AU - Rostami, Mehdi
AU - Pourabbas, Abdolrasoul
TI - On left $\varphi $-biflat Banach algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 337
EP - 344
AB - We study the notion of left $\varphi $-biflatness for Segal algebras and semigroup algebras. We show that the Segal algebra $S(G)$ is left $\varphi $-biflat if and only if $G$ is amenable. Also we characterize left $\varphi $-biflatness of semigroup algebra $l^{1}(S)$ in terms of biflatness, when $S$ is a Clifford semigroup.
LA - eng
KW - left $\varphi $-biflat; Segal algebra; semigroup algebra; locally compact group
UR - http://eudml.org/doc/297031
ER -
References
top- Alaghmandan M., Nasr-Isfahani R., Nemati M., 10.1017/S0004972710000286, Bull. Aust. Math. Soc. 82 (2010), no. 2, 274–281. MR2685151DOI10.1017/S0004972710000286
- Essmaili M., Rostami M., Amini M., 10.3336/gm.51.1.04, Glas. Mat. Ser. III 51(71) (2016), no. 1, 45–58. MR3516184DOI10.3336/gm.51.1.04
- Ghahramani F., Lau A. T. M., 10.1017/S0305004102005960, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 357–371. MR1912407DOI10.1017/S0305004102005960
- Ghahramani F., Loy R. J., Willis G. A., 10.1090/S0002-9939-96-03177-2, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1489–1497. MR1307520DOI10.1090/S0002-9939-96-03177-2
- Hewitt E., Ross K. A., Abstract Harmonic Analysis I: Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, Springer, Berlin, 1963. MR0156915
- Howie J. M., Fundamental of Semigroup Theory, London Mathematical Society Monographs, New Series, 12, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR1455373
- Hu Z., Monfared M. S., Traynor T., 10.4064/sm193-1-3, Studia Math. 193 (2009), no. 1, 53–78. MR2506414DOI10.4064/sm193-1-3
- Javanshiri H., Nemati M., 10.36045/bbms/1547780429, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 5, 687–698. MR3901840DOI10.36045/bbms/1547780429
- Kaniuth E., Lau A. T., Pym J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR2388235DOI10.1017/S0305004107000874
- Ramsden P., 10.1007/s00233-009-9169-6, Semigroup Forum 79 (2009), no. 3, 515–530. MR2564061DOI10.1007/s00233-009-9169-6
- Reiter H., -algebras and Segal Algebras, Lecture Notes in Mathematics, 231, Springer, Berlin, 1971. MR0440280
- Runde V., Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR1874893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.