Division algebras that generalize Dickson semifields
Communications in Mathematics (2020)
- Volume: 28, Issue: 2, page 89-102
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topThompson, Daniel. "Division algebras that generalize Dickson semifields." Communications in Mathematics 28.2 (2020): 89-102. <http://eudml.org/doc/297041>.
@article{Thompson2020,
abstract = {We generalize Knuth’s construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.},
author = {Thompson, Daniel},
journal = {Communications in Mathematics},
keywords = {Nonassociative algebras; division algebras; automorphisms},
language = {eng},
number = {2},
pages = {89-102},
publisher = {University of Ostrava},
title = {Division algebras that generalize Dickson semifields},
url = {http://eudml.org/doc/297041},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Thompson, Daniel
TI - Division algebras that generalize Dickson semifields
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 89
EP - 102
AB - We generalize Knuth’s construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.
LA - eng
KW - Nonassociative algebras; division algebras; automorphisms
UR - http://eudml.org/doc/297041
ER -
References
top- Brown, C., Pumplün, S., 10.1080/00927872.2017.1327598, Communications in Algebra, 46, 2, 2018, 834-849, Taylor & Francis, (2018) MR3764900DOI10.1080/00927872.2017.1327598
- Burmester, M.V.D., On the commutative non-associative division algebras of even order of LE Dickson, Rendiconti di Matematica e delle sue Applicazioni. Serie V, 21, 1962, 143-166, (1962) MR0141692
- Burmester, M.V.D., 10.1007/BF01589214, Archiv der Mathematik, 15, 1, 1964, 364-370, Springer, (1964) MR0173971DOI10.1007/BF01589214
- Cohen, S.D., Ganley, M.J., 10.1016/0021-8693(82)90045-X, Journal of Algebra, 75, 2, 1982, 373-385, Academic Press, (1982) MR0653897DOI10.1016/0021-8693(82)90045-X
- Cordero, M., Wene, G.P., 10.1016/S0012-365X(99)00068-0, Discrete Mathematics, 208, 1999, 125-137, Elsevier, (1999) MR1725526DOI10.1016/S0012-365X(99)00068-0
- Dickson, L.E., 10.1090/S0002-9947-1906-1500764-6, Transactions of the American Mathematical Society, 7, 4, 1906, 514-522, JSTOR, (1906) MR1500764DOI10.1090/S0002-9947-1906-1500764-6
- Ganley, M.J., 10.1016/S0195-6698(81)80041-8, European Journal of Combinatorics, 2, 4, 1981, 339-347, Elsevier, (1981) MR0638409DOI10.1016/S0195-6698(81)80041-8
- Hui, A., Tai, Y.K., Wong, P.P.W., On the autotopism group of the commutative Dickson semifield and the stabilizer of the Ganley unital embedded in the semifield plane , Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial, 14, 1, 2015, 27-42, Mathematical Sciences Publishers, (2015) MR3450950
- Knus, M., Merkurjev, A., Rost, M., Tignol, J., The book of involutions, 1998, American Mathematical Soc., (1998) MR1632779
- Knuth, D.E., Finite semifields and projective planes, 1963, Dissertation (Ph.D.), California Institute of Technology. (1963) MR2939390
- Schafer, R.D., An introduction to nonassociative algebras, 1995, Dover Publications, (1995) MR1375235
- Thompson, D., 10.1080/00927872.2020.1751849, Communications in Algebra, 48, 9, 2020, 3922-3932, (2020) MR4124670DOI10.1080/00927872.2020.1751849
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.