Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation

Mohamed Berbiche

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 2, page 205-223
  • ISSN: 0862-7959

Abstract

top
We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.

How to cite

top

Berbiche, Mohamed. "Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation." Mathematica Bohemica 145.2 (2020): 205-223. <http://eudml.org/doc/297042>.

@article{Berbiche2020,
abstract = {We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.},
author = {Berbiche, Mohamed},
journal = {Mathematica Bohemica},
keywords = {global existence; uniqueness; uniform stabilization},
language = {eng},
number = {2},
pages = {205-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation},
url = {http://eudml.org/doc/297042},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Berbiche, Mohamed
TI - Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 205
EP - 223
AB - We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
LA - eng
KW - global existence; uniqueness; uniform stabilization
UR - http://eudml.org/doc/297042
ER -

References

top
  1. Aassila, M., Cavalcanti, M. M., Soriano, J. A., 10.1137/S0363012998344981, SIAM J. Control Optim. 38 (2000), 1581-1602. (2000) Zbl0985.35008MR1766431DOI10.1137/S0363012998344981
  2. Achouri, Z., Amroun, N. E., Benaissa, A., 10.1002/mma.4267, Math. Methods Appl. Sci. 40 (2017), 3837-3854. (2017) Zbl1366.93484MR3668815DOI10.1002/mma.4267
  3. Aizicovici, S., Feireisl, E., 10.1007/PL00001365, J. Evol. Equ. 1 (2001), 69-84. (2001) Zbl0973.35037MR1838321DOI10.1007/PL00001365
  4. Cavalcanti, M. M., Oquendo, H. P., 10.1137/S0363012902408010, SIAM J. Control Optimization 42 (2003), 1310-1324. (2003) Zbl1053.35101MR2044797DOI10.1137/S0363012902408010
  5. Chill, R., Fašangová, E., 10.1007/s00526-004-0278-5, Calc. Var. Partial Differ. Equ. 22 (2005), 321-342. (2005) Zbl1087.45005MR2118902DOI10.1007/s00526-004-0278-5
  6. Coleman, B. D., Dill, E. H., 10.1007/BF00281371, Arch. Rational Mech. Anal. 41 (1971), 132-162. (1971) MR0347245DOI10.1007/BF00281371
  7. Coleman, B. D., Dill, E. H., 10.1007/BF01587765, Zeit. Angew. Math. Phys. 22 (1971), 691-702. (1971) Zbl0218.35072DOI10.1007/BF01587765
  8. Dafermos, C. M., 10.1007/BF00251609, Arch. Ration. Mech. Anal. 37 (1970), 297-308. (1970) Zbl0214.24503MR0281400DOI10.1007/BF00251609
  9. Desch, W., Fašangová, E., Milota, J., Propst, G., 10.1007/s00233-009-9197-2, Semigroup Forum 80 (2010), 405-415. (2010) Zbl1193.35149MR2647481DOI10.1007/s00233-009-9197-2
  10. Eringen, A. C., Maugin, G. A., 10.1007/978-1-4612-3226-1, Foundations and Solid Media. Springer, New York (1990). (1990) MR1031714DOI10.1007/978-1-4612-3226-1
  11. Fabrizio, M., Morro, A., 10.1515/jnet.1997.22.2.110, J. Non-Equilibrium Thermodyn. 22 (1997), 110-128. (1997) Zbl0889.73004DOI10.1515/jnet.1997.22.2.110
  12. Giorgi, C., Naso, M. G., Pata, V., 10.1142/S0218202505000844, Math. Models Methods Appl. Sci. 15 (2005), 1489-1502. (2005) Zbl1078.35018MR2168942DOI10.1142/S0218202505000844
  13. Han, X., Wang, M., 10.1016/j.na.2008.04.011, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3090-3098. (2009) Zbl1173.35579MR2503053DOI10.1016/j.na.2008.04.011
  14. Han, X., Wang, M., 10.1002/mma.1041, Math. Methods Appl. Sci. 33 (2010), 346-358. (2010) Zbl1161.35319MR2484178DOI10.1002/mma.1041
  15. Komornik, V., Zuazua, E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), 33-54. (1990) Zbl0636.93064MR1054123
  16. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  17. Matignon, M., Audounet, J., Montseny, G., Energy decay rate for wave equations with damping of fractional order, Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640. (1998) 
  18. Matos, L. P. V., Dmitriev, V., 10.1109/IMOC.2009.5427530, SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. (2009) DOI10.1109/IMOC.2009.5427530
  19. Maugin, G. A., 10.1002/zamm.19890691106, North-Holland Series in Applied Mathematics and Mechanics 33. North-Holland, Amsterdam (1988). (1988) Zbl0652.73002MR0954611DOI10.1002/zamm.19890691106
  20. Mbodje, B., 10.1093/imamci/dni056, IMA J. Math. Control Inf. 23 (2006), 237-257. (2006) Zbl1095.93015MR2211512DOI10.1093/imamci/dni056
  21. Messaoudi, S. A., 10.1016/j.na.2007.08.035, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 2589-2598. (2008) Zbl1154.35066MR2446355DOI10.1016/j.na.2007.08.035
  22. Rivera, J. E. Muñoz, Naso, M. G., Vuk, E., 10.1002/mma.473, Math. Methods Appl. Sci. 27 (2004), 819-841. (2004) Zbl1054.35103MR2055321DOI10.1002/mma.473
  23. Nicaise, S., Pignotti, C., Stabilization of the wave equation with variable coefficients and boundary condition of memory type, Asymptotic Anal. 50 (2006), 31-67. (2006) Zbl1139.35373MR2286936
  24. Park, J. Y., Park, S. H., 10.1016/j.na.2010.09.057, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. (2011) Zbl1202.35032MR2738648DOI10.1016/j.na.2010.09.057
  25. Pata, V., Zucchi, A., Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl. 11 (2001), 505-529. (2001) Zbl0999.35014MR1907454
  26. Wu, S.-T., 10.1007/s00033-011-0151-2, Z. Angew. Math. Phys. 63 (2012), 65-106. (2012) Zbl1242.35053MR2878734DOI10.1007/s00033-011-0151-2
  27. Yassine, H., 10.4171/ZAA/1604, Z. Anal. Anwend. 37 (2018), 83-99. (2018) Zbl06852543MR3746499DOI10.4171/ZAA/1604
  28. Zacher, R., Convergence to equilibrium for second order differential equations with weak damping of memory type, Adv. Differ. Equ. 14 (2009), 749-770. (2009) Zbl1190.45007MR2527692

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.