Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
Mathematica Bohemica (2020)
- Volume: 145, Issue: 2, page 205-223
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBerbiche, Mohamed. "Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation." Mathematica Bohemica 145.2 (2020): 205-223. <http://eudml.org/doc/297042>.
@article{Berbiche2020,
abstract = {We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.},
author = {Berbiche, Mohamed},
journal = {Mathematica Bohemica},
keywords = {global existence; uniqueness; uniform stabilization},
language = {eng},
number = {2},
pages = {205-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation},
url = {http://eudml.org/doc/297042},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Berbiche, Mohamed
TI - Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 205
EP - 223
AB - We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.
LA - eng
KW - global existence; uniqueness; uniform stabilization
UR - http://eudml.org/doc/297042
ER -
References
top- Aassila, M., Cavalcanti, M. M., Soriano, J. A., 10.1137/S0363012998344981, SIAM J. Control Optim. 38 (2000), 1581-1602. (2000) Zbl0985.35008MR1766431DOI10.1137/S0363012998344981
- Achouri, Z., Amroun, N. E., Benaissa, A., 10.1002/mma.4267, Math. Methods Appl. Sci. 40 (2017), 3837-3854. (2017) Zbl1366.93484MR3668815DOI10.1002/mma.4267
- Aizicovici, S., Feireisl, E., 10.1007/PL00001365, J. Evol. Equ. 1 (2001), 69-84. (2001) Zbl0973.35037MR1838321DOI10.1007/PL00001365
- Cavalcanti, M. M., Oquendo, H. P., 10.1137/S0363012902408010, SIAM J. Control Optimization 42 (2003), 1310-1324. (2003) Zbl1053.35101MR2044797DOI10.1137/S0363012902408010
- Chill, R., Fašangová, E., 10.1007/s00526-004-0278-5, Calc. Var. Partial Differ. Equ. 22 (2005), 321-342. (2005) Zbl1087.45005MR2118902DOI10.1007/s00526-004-0278-5
- Coleman, B. D., Dill, E. H., 10.1007/BF00281371, Arch. Rational Mech. Anal. 41 (1971), 132-162. (1971) MR0347245DOI10.1007/BF00281371
- Coleman, B. D., Dill, E. H., 10.1007/BF01587765, Zeit. Angew. Math. Phys. 22 (1971), 691-702. (1971) Zbl0218.35072DOI10.1007/BF01587765
- Dafermos, C. M., 10.1007/BF00251609, Arch. Ration. Mech. Anal. 37 (1970), 297-308. (1970) Zbl0214.24503MR0281400DOI10.1007/BF00251609
- Desch, W., Fašangová, E., Milota, J., Propst, G., 10.1007/s00233-009-9197-2, Semigroup Forum 80 (2010), 405-415. (2010) Zbl1193.35149MR2647481DOI10.1007/s00233-009-9197-2
- Eringen, A. C., Maugin, G. A., 10.1007/978-1-4612-3226-1, Foundations and Solid Media. Springer, New York (1990). (1990) MR1031714DOI10.1007/978-1-4612-3226-1
- Fabrizio, M., Morro, A., 10.1515/jnet.1997.22.2.110, J. Non-Equilibrium Thermodyn. 22 (1997), 110-128. (1997) Zbl0889.73004DOI10.1515/jnet.1997.22.2.110
- Giorgi, C., Naso, M. G., Pata, V., 10.1142/S0218202505000844, Math. Models Methods Appl. Sci. 15 (2005), 1489-1502. (2005) Zbl1078.35018MR2168942DOI10.1142/S0218202505000844
- Han, X., Wang, M., 10.1016/j.na.2008.04.011, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3090-3098. (2009) Zbl1173.35579MR2503053DOI10.1016/j.na.2008.04.011
- Han, X., Wang, M., 10.1002/mma.1041, Math. Methods Appl. Sci. 33 (2010), 346-358. (2010) Zbl1161.35319MR2484178DOI10.1002/mma.1041
- Komornik, V., Zuazua, E., A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), 33-54. (1990) Zbl0636.93064MR1054123
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Matignon, M., Audounet, J., Montseny, G., Energy decay rate for wave equations with damping of fractional order, Fourth Int. Conf. Mathematical and Numerical Aspects of Wave Propagation Phenomena (1998), 638-640. (1998)
- Matos, L. P. V., Dmitriev, V., 10.1109/IMOC.2009.5427530, SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC) IEEE, Belem (2009), 528-532. (2009) DOI10.1109/IMOC.2009.5427530
- Maugin, G. A., 10.1002/zamm.19890691106, North-Holland Series in Applied Mathematics and Mechanics 33. North-Holland, Amsterdam (1988). (1988) Zbl0652.73002MR0954611DOI10.1002/zamm.19890691106
- Mbodje, B., 10.1093/imamci/dni056, IMA J. Math. Control Inf. 23 (2006), 237-257. (2006) Zbl1095.93015MR2211512DOI10.1093/imamci/dni056
- Messaoudi, S. A., 10.1016/j.na.2007.08.035, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 2589-2598. (2008) Zbl1154.35066MR2446355DOI10.1016/j.na.2007.08.035
- Rivera, J. E. Muñoz, Naso, M. G., Vuk, E., 10.1002/mma.473, Math. Methods Appl. Sci. 27 (2004), 819-841. (2004) Zbl1054.35103MR2055321DOI10.1002/mma.473
- Nicaise, S., Pignotti, C., Stabilization of the wave equation with variable coefficients and boundary condition of memory type, Asymptotic Anal. 50 (2006), 31-67. (2006) Zbl1139.35373MR2286936
- Park, J. Y., Park, S. H., 10.1016/j.na.2010.09.057, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 993-998. (2011) Zbl1202.35032MR2738648DOI10.1016/j.na.2010.09.057
- Pata, V., Zucchi, A., Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl. 11 (2001), 505-529. (2001) Zbl0999.35014MR1907454
- Wu, S.-T., 10.1007/s00033-011-0151-2, Z. Angew. Math. Phys. 63 (2012), 65-106. (2012) Zbl1242.35053MR2878734DOI10.1007/s00033-011-0151-2
- Yassine, H., 10.4171/ZAA/1604, Z. Anal. Anwend. 37 (2018), 83-99. (2018) Zbl06852543MR3746499DOI10.4171/ZAA/1604
- Zacher, R., Convergence to equilibrium for second order differential equations with weak damping of memory type, Adv. Differ. Equ. 14 (2009), 749-770. (2009) Zbl1190.45007MR2527692
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.