Displaying similar documents to “Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation”

Asymptotic stability of wave equations with memory and frictional boundary dampings

Fatiha Alabau-Boussouira (2008)

Applicationes Mathematicae

Similarity:

This work is concerned with stabilization of a wave equation by a linear boundary term combining frictional and memory damping on part of the boundary. We prove that the energy decays to zero exponentially if the kernel decays exponentially at infinity. We consider a slightly different boundary condition than the one used by M. Aassila et al. [Calc. Var. 15, 2002]. This allows us to avoid the assumption that the part of the boundary where the feedback is active is strictly star-shaped....

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Decay and asymptotic behavior of solutions of the Keller-Segel system of degenerate and nondegenerate type

Takayoshi Ogawa (2006)

Banach Center Publications

Similarity:

We classify the global behavior of weak solutions of the Keller-Segel system of degenerate and nondegenerate type. For the stronger degeneracy, the weak solution exists globally in time and has a uniform time decay under some extra conditions. If the degeneracy is weaker, the solution exhibits a finite time blow up if the data is nonnegative. The situation is very similar to the semilinear case. Some additional discussion is also presented.

Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term

Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long (2023)

Applications of Mathematics

Similarity:

We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable...

Blow-up of solutions for a viscoelastic equation with nonlinear damping

Yang Zhifeng (2008)

Open Mathematics

Similarity:

The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.