Estimating the conditional expectations for continuous time stationary processes

Gusztáv Morvai; Benjamin Weiss

Kybernetika (2020)

  • Volume: 56, Issue: 3, page 410-431
  • ISSN: 0023-5954

Abstract

top
One of the basic estimation problems for continuous time stationary processes X t , is that of estimating E { X t + β | X s : s [ 0 , t ] } based on the observation of the single block { X s : s [ 0 , t ] } when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.

How to cite

top

Morvai, Gusztáv, and Weiss, Benjamin. "Estimating the conditional expectations for continuous time stationary processes." Kybernetika 56.3 (2020): 410-431. <http://eudml.org/doc/297050>.

@article{Morvai2020,
abstract = {One of the basic estimation problems for continuous time stationary processes $X_t$, is that of estimating $E\lbrace X_\{t+\beta \}| X_s : s \in [0, t]\rbrace $ based on the observation of the single block $\lbrace X_s : s \in [0, t]\rbrace $ when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Kybernetika},
keywords = {nonparametric estimation; continuous time stationary processes},
language = {eng},
number = {3},
pages = {410-431},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Estimating the conditional expectations for continuous time stationary processes},
url = {http://eudml.org/doc/297050},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Estimating the conditional expectations for continuous time stationary processes
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 410
EP - 431
AB - One of the basic estimation problems for continuous time stationary processes $X_t$, is that of estimating $E\lbrace X_{t+\beta }| X_s : s \in [0, t]\rbrace $ based on the observation of the single block $\lbrace X_s : s \in [0, t]\rbrace $ when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.
LA - eng
KW - nonparametric estimation; continuous time stationary processes
UR - http://eudml.org/doc/297050
ER -

References

top
  1. Algoet, P., 10.1214/aop/1176989811, Ann. Probab. 20 (1992), 901-941. MR1159579DOI10.1214/aop/1176989811
  2. Algoet, P., 10.1109/18.335876, IEEE Trans. Inform. Theory 40 (1994), 609-633. MR1295308DOI10.1109/18.335876
  3. Algoet, P., 10.1109/18.761258, IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl0959.62078MR1686250DOI10.1109/18.761258
  4. Bailey, D., Sequential Schemes for Classifying and Predicting Ergodic Processes., Ph.D. Thesis, Stanford University 1976. MR2626644
  5. Breiman, L., 10.1214/aoms/1177706899, Ann. Math. Statist. 28 (1957), 809-811. MR0092710DOI10.1214/aoms/1177706899
  6. Cover, T., Open problems in information theory., In: 1975 IEEE-USSR Joint Workshop on Information Theory 1975, pp. 35-36. MR0469507
  7. Chow, Y. S., Teicher, H., Probability Theory: Independence, Interchangeability, Martingales. Second edition., Springer-Verlag, New York 1978. MR0513230
  8. Doob, J. L., Stochastic Processes., Wiley, 1990 MR1038526
  9. Elton, J., 10.1214/aop/1176994414, Ann. Probab. 9 (1981), 405-412. MR0614626DOI10.1214/aop/1176994414
  10. Györfi, L., Kohler, M., Krzyzak, A., Walk, H., 10.1007/b97848, Springer Series in Statistics, Springer-Verlag, New York 2002. MR1920390DOI10.1007/b97848
  11. Györfi, L., Morvai, G., Yakowitz, S., 10.1109/18.661540, IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl0899.62122MR1607704DOI10.1109/18.661540
  12. Györfi, L., Ottucsák, Gy., 10.1109/tit.2007.894660, IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR2317147DOI10.1109/tit.2007.894660
  13. Györfi, L., Ottucsák, Gy., Walk, H., 10.1142/p818, Imperial College Press, London 2012. DOI10.1142/p818
  14. Hall, P., Heyde, C. C., Martingale Limit Theory and Its Application., Academic Prress, 1975. MR0624435
  15. Maker, Ph. T., 10.1215/s0012-7094-40-00602-0, Duke Math. J. 6 (1940), 27-30. MR0002028DOI10.1215/s0012-7094-40-00602-0
  16. Morvai, G., Estimation of Conditional Distribution for Stationary Time Series., Ph.D. Thesis, Technical University of Budapest 1994. 
  17. Morvai, G., Yakowitz, S., Györfi, L., 10.1214/aos/1033066215, Ann. Statist. 24 (1996), 370-379. MR1389896DOI10.1214/aos/1033066215
  18. Morvai, G., Weiss, B., 10.1214/10-aop576, Ann. Prob. 39 (2011), 1137-1160. MR2789586DOI10.1214/10-aop576
  19. Neveu, J., Mathematical Foundations of the Calculus of Probability., Holden-Day, 1965. MR0198505
  20. Ornstein, D., 10.1007/bf02761077, Israel J. of Math. 30 (1978), 292-296. MR0508271DOI10.1007/bf02761077
  21. Ryabko, B., Prediction of random sequences and universal coding., Probl. Inform. Trans. 24 (1988), 87-96. Zbl0666.94009MR0955983
  22. Scarpellini, B., 10.1007/bf01776579, Math. Systems Theory 12 (1979), 281-296. MR0529563DOI10.1007/bf01776579
  23. Scarpellini, B., 10.1007/bf00533638, Probab. Theory Related Fields 50 (1079, 2, 165-178. MR0551610DOI10.1007/bf00533638
  24. Scarpellini, B., 10.1007/bf00531426, Z. Wahrsch. Verw. Gebiete 56 (1981), 4, 427-441. MR0621658DOI10.1007/bf00531426
  25. Shields, P. C., 10.1109/18.104321, IEEE Trans. Inform. Theory 37 (1991), 1605-1614. MR1134300DOI10.1109/18.104321
  26. Shiryayev, A. N., Probability., Springer-Verlag, New York 1984. MR0737192
  27. Weiss, B., Single Orbit Dynamics., American Mathematical Society, 2000. MR1727510

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.