Estimating the conditional expectations for continuous time stationary processes
Gusztáv Morvai; Benjamin Weiss
Kybernetika (2020)
- Volume: 56, Issue: 3, page 410-431
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMorvai, Gusztáv, and Weiss, Benjamin. "Estimating the conditional expectations for continuous time stationary processes." Kybernetika 56.3 (2020): 410-431. <http://eudml.org/doc/297050>.
@article{Morvai2020,
abstract = {One of the basic estimation problems for continuous time stationary processes $X_t$, is that of estimating $E\lbrace X_\{t+\beta \}| X_s : s \in [0, t]\rbrace $ based on the observation of the single block $\lbrace X_s : s \in [0, t]\rbrace $ when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.},
author = {Morvai, Gusztáv, Weiss, Benjamin},
journal = {Kybernetika},
keywords = {nonparametric estimation; continuous time stationary processes},
language = {eng},
number = {3},
pages = {410-431},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Estimating the conditional expectations for continuous time stationary processes},
url = {http://eudml.org/doc/297050},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Morvai, Gusztáv
AU - Weiss, Benjamin
TI - Estimating the conditional expectations for continuous time stationary processes
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 410
EP - 431
AB - One of the basic estimation problems for continuous time stationary processes $X_t$, is that of estimating $E\lbrace X_{t+\beta }| X_s : s \in [0, t]\rbrace $ based on the observation of the single block $\lbrace X_s : s \in [0, t]\rbrace $ when the actual distribution of the process is not known. We will give fairly optimal universal estimates of this type that correspond to the optimal results in the case of discrete time processes.
LA - eng
KW - nonparametric estimation; continuous time stationary processes
UR - http://eudml.org/doc/297050
ER -
References
top- Algoet, P., 10.1214/aop/1176989811, Ann. Probab. 20 (1992), 901-941. MR1159579DOI10.1214/aop/1176989811
- Algoet, P., 10.1109/18.335876, IEEE Trans. Inform. Theory 40 (1994), 609-633. MR1295308DOI10.1109/18.335876
- Algoet, P., 10.1109/18.761258, IEEE Trans. Inform. Theory 45 (1999), 1165-1185. Zbl0959.62078MR1686250DOI10.1109/18.761258
- Bailey, D., Sequential Schemes for Classifying and Predicting Ergodic Processes., Ph.D. Thesis, Stanford University 1976. MR2626644
- Breiman, L., 10.1214/aoms/1177706899, Ann. Math. Statist. 28 (1957), 809-811. MR0092710DOI10.1214/aoms/1177706899
- Cover, T., Open problems in information theory., In: 1975 IEEE-USSR Joint Workshop on Information Theory 1975, pp. 35-36. MR0469507
- Chow, Y. S., Teicher, H., Probability Theory: Independence, Interchangeability, Martingales. Second edition., Springer-Verlag, New York 1978. MR0513230
- Doob, J. L., Stochastic Processes., Wiley, 1990 MR1038526
- Elton, J., 10.1214/aop/1176994414, Ann. Probab. 9 (1981), 405-412. MR0614626DOI10.1214/aop/1176994414
- Györfi, L., Kohler, M., Krzyzak, A., Walk, H., 10.1007/b97848, Springer Series in Statistics, Springer-Verlag, New York 2002. MR1920390DOI10.1007/b97848
- Györfi, L., Morvai, G., Yakowitz, S., 10.1109/18.661540, IEEE Trans. Inform. Theory 44 (1998), 886-892. Zbl0899.62122MR1607704DOI10.1109/18.661540
- Györfi, L., Ottucsák, Gy., 10.1109/tit.2007.894660, IEEE Trans. Inform. Theory 53 (2007), 1866-1872. MR2317147DOI10.1109/tit.2007.894660
- Györfi, L., Ottucsák, Gy., Walk, H., 10.1142/p818, Imperial College Press, London 2012. DOI10.1142/p818
- Hall, P., Heyde, C. C., Martingale Limit Theory and Its Application., Academic Prress, 1975. MR0624435
- Maker, Ph. T., 10.1215/s0012-7094-40-00602-0, Duke Math. J. 6 (1940), 27-30. MR0002028DOI10.1215/s0012-7094-40-00602-0
- Morvai, G., Estimation of Conditional Distribution for Stationary Time Series., Ph.D. Thesis, Technical University of Budapest 1994.
- Morvai, G., Yakowitz, S., Györfi, L., 10.1214/aos/1033066215, Ann. Statist. 24 (1996), 370-379. MR1389896DOI10.1214/aos/1033066215
- Morvai, G., Weiss, B., 10.1214/10-aop576, Ann. Prob. 39 (2011), 1137-1160. MR2789586DOI10.1214/10-aop576
- Neveu, J., Mathematical Foundations of the Calculus of Probability., Holden-Day, 1965. MR0198505
- Ornstein, D., 10.1007/bf02761077, Israel J. of Math. 30 (1978), 292-296. MR0508271DOI10.1007/bf02761077
- Ryabko, B., Prediction of random sequences and universal coding., Probl. Inform. Trans. 24 (1988), 87-96. Zbl0666.94009MR0955983
- Scarpellini, B., 10.1007/bf01776579, Math. Systems Theory 12 (1979), 281-296. MR0529563DOI10.1007/bf01776579
- Scarpellini, B., 10.1007/bf00533638, Probab. Theory Related Fields 50 (1079, 2, 165-178. MR0551610DOI10.1007/bf00533638
- Scarpellini, B., 10.1007/bf00531426, Z. Wahrsch. Verw. Gebiete 56 (1981), 4, 427-441. MR0621658DOI10.1007/bf00531426
- Shields, P. C., 10.1109/18.104321, IEEE Trans. Inform. Theory 37 (1991), 1605-1614. MR1134300DOI10.1109/18.104321
- Shiryayev, A. N., Probability., Springer-Verlag, New York 1984. MR0737192
- Weiss, B., Single Orbit Dynamics., American Mathematical Society, 2000. MR1727510
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.