Norm inequalities for the difference between weighted and integral means of operator differentiable functions
Archivum Mathematicum (2020)
- Volume: 056, Issue: 3, page 183-197
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDragomir, Silvestru Sever. "Norm inequalities for the difference between weighted and integral means of operator differentiable functions." Archivum Mathematicum 056.3 (2020): 183-197. <http://eudml.org/doc/297053>.
@article{Dragomir2020,
abstract = {Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal \{SA\}_\{I\}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\ne B$ and $f$, as an operator function, is Gateaux differentiable on \begin\{equation*\} [ A,B] :=\left\lbrace ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\rbrace \,, \end\{equation*\}
while $p\colon \left[ 0,1\right] \rightarrow \mathbb \{R\}$ is Lebesgue integrable, then we have the inequalities \begin\{align*\} \Big \Vert \int \_\{0\}^\{1\}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int \_\{0\}^\{1\}p\left( \tau \right) \,d\tau \int \_\{0\}^\{1\}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big \Vert \\ & \le \int \_\{0\}^\{1\}\tau ( 1-\tau ) \Big \vert \frac\{\int \_\{\tau \}^\{1\}p\left( s\right)\, ds\}\{1-\tau \}-\frac\{\int \_\{0\}^\{\tau \}p\left( s\right)\, ds\}\{\tau \}\Big \vert \left\Vert \nabla f\_\{\left( 1-\tau \right) A+\tau B\}\left( B-A\right) \right\Vert \,d\tau \\ & \le \frac\{1\}\{4\}\int \_\{0\}^\{1\}\Big \vert \frac\{\int \_\{\tau \}^\{1\}p\left( s\right)\, ds\}\{1-\tau \}-\frac\{\int \_\{0\}^\{\tau \}p\left( s\right)\, ds\}\{\tau \} \Big \vert \left\Vert \nabla f\_\{\left( 1-\tau \right) A+\tau B\}\left( B-A\right) \right\Vert \, d\tau \,, \end\{align*\}
where $\nabla f$ is the Gateaux derivative of $f$.},
author = {Dragomir, Silvestru Sever},
journal = {Archivum Mathematicum},
keywords = {operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means},
language = {eng},
number = {3},
pages = {183-197},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Norm inequalities for the difference between weighted and integral means of operator differentiable functions},
url = {http://eudml.org/doc/297053},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Dragomir, Silvestru Sever
TI - Norm inequalities for the difference between weighted and integral means of operator differentiable functions
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 183
EP - 197
AB - Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal {SA}_{I}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\ne B$ and $f$, as an operator function, is Gateaux differentiable on \begin{equation*} [ A,B] :=\left\lbrace ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\rbrace \,, \end{equation*}
while $p\colon \left[ 0,1\right] \rightarrow \mathbb {R}$ is Lebesgue integrable, then we have the inequalities \begin{align*} \Big \Vert \int _{0}^{1}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int _{0}^{1}p\left( \tau \right) \,d\tau \int _{0}^{1}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big \Vert \\ & \le \int _{0}^{1}\tau ( 1-\tau ) \Big \vert \frac{\int _{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int _{0}^{\tau }p\left( s\right)\, ds}{\tau }\Big \vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \,d\tau \\ & \le \frac{1}{4}\int _{0}^{1}\Big \vert \frac{\int _{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int _{0}^{\tau }p\left( s\right)\, ds}{\tau } \Big \vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \, d\tau \,, \end{align*}
where $\nabla f$ is the Gateaux derivative of $f$.
LA - eng
KW - operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means
UR - http://eudml.org/doc/297053
ER -
References
top- Agarwal, R.P., Dragomir, S.S., 10.1016/j.camwa.2010.04.014, Comput. Math. Appl. 59 (12) (2010), 3785–3812. (2010) MR2651854DOI10.1016/j.camwa.2010.04.014
- Bacak, V., Vildan, T., Türkmen, R., Refinements of Hermite-Hadamard type inequalities for operator convex functions, J. Inequal. Appl. 2013 (262) (2013), 10 pp. (2013) MR3068637
- Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A., Some inequalities associated with the Hermite-Hadamard inequalities for operator -convex functions, Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297. (2017) MR3745136
- Dragomir, S.S., Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comput. 218 (3) (2011), 766–772. (2011) MR2831305
- Dragomir, S.S., Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics. Springer, New York, 2012. (2012) MR2866026
- Dragomir, S.S., Bounds for the difference between weighted and integral means of operator convex function, RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online shttp://rgmia.org/papers/v22/v22a97.pdf]. (2019)
- Dragomir, S.S., Reverses of operator Féjer’s inequalities, RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 91, [Online http://rgmia.org/papers/v22/v22a91.pdf]. (2019)
- Dragomir, S.S., 10.1515/spma-2019-0005, Spec. Matrices 7 (2019), 38–51, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf]. (2019) MR3940941DOI10.1515/spma-2019-0005
- Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y., Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005. (2005) MR3026316
- Ghazanfari, A.G., 10.5373/jarpm.1876.110613, J. Adv. Res. Pure Math. 6 (3) (2014), 52–61. (2014) MR3239991DOI10.5373/jarpm.1876.110613
- Ghazanfari, A.G., 10.1007/s11785-016-0542-7, Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703. (2016) MR3558363DOI10.1007/s11785-016-0542-7
- Han, J., Shi, J., 10.22436/jnsa.010.11.38, J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041. (2017) MR3738820DOI10.22436/jnsa.010.11.38
- Li, B., 10.12988/ijcms.2013.13046, Int. J. Contemp. Math. Sci. 8 (9–12) (2013), 463–467. (2013) MR3106565DOI10.12988/ijcms.2013.13046
- Pedersen, G.K., 10.2977/prims/1195143229, Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139–157. (2000) MR1749015DOI10.2977/prims/1195143229
- Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S., 10.1007/s00605-015-0816-6, Monatsh. Math. 181 (1) (2016), 187–203. (2016) MR3535913DOI10.1007/s00605-015-0816-6
- Vivas Cortez, M., Hernández, J.E.H., 10.18576/amis/110405, Appl. Math. Inf. Sci. 11 (4) (2017), 983–992. (2017) MR3677622DOI10.18576/amis/110405
- Vivas Cortez, M., Hernández, J.E.H., 10.18576/amis/110507, Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307. (2017) MR3704419DOI10.18576/amis/110507
- Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A., 10.18576/amis/110205, Appl. Math. Inf. Sci. 11 (2) (2017), 383–392. (2017) MR3704419DOI10.18576/amis/110205
- Wang, S.-H., 10.22436/jnsa.010.03.22, J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125. (2017) MR3646673DOI10.22436/jnsa.010.03.22
- Wang, S.-H., New integral inequalities of Hermite-Hadamard type for operator m-convex and -convex functions, J. Comput. Anal. Appl. 22 (4) (2017), 744–753. (2017) MR3616847
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.