Norm inequalities for the difference between weighted and integral means of operator differentiable functions

Silvestru Sever Dragomir

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 3, page 183-197
  • ISSN: 0044-8753

Abstract

top
Let f be a continuous function on I and A , B 𝒮𝒜 I H , the convex set of selfadjoint operators with spectra in I . If A B and f , as an operator function, is Gateaux differentiable on [ A , B ] : = ( 1 - t ) A + t B t 0 , 1 , while p : 0 , 1 is Lebesgue integrable, then we have the inequalities 0 1 p τ f 1 - τ A + τ B d τ - 0 1 p τ d τ 0 1 f 1 - τ A + τ B d τ 0 1 τ ( 1 - τ ) | τ 1 p s d s 1 - τ - 0 τ p s d s τ | f 1 - τ A + τ B B - A d τ 1 4 0 1 | τ 1 p s d s 1 - τ - 0 τ p s d s τ | f 1 - τ A + τ B B - A d τ , where f is the Gateaux derivative of f .

How to cite

top

Dragomir, Silvestru Sever. "Norm inequalities for the difference between weighted and integral means of operator differentiable functions." Archivum Mathematicum 056.3 (2020): 183-197. <http://eudml.org/doc/297053>.

@article{Dragomir2020,
abstract = {Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal \{SA\}_\{I\}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\ne B$ and $f$, as an operator function, is Gateaux differentiable on \begin\{equation*\} [ A,B] :=\left\lbrace ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\rbrace \,, \end\{equation*\} while $p\colon \left[ 0,1\right] \rightarrow \mathbb \{R\}$ is Lebesgue integrable, then we have the inequalities \begin\{align*\} \Big \Vert \int \_\{0\}^\{1\}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int \_\{0\}^\{1\}p\left( \tau \right) \,d\tau \int \_\{0\}^\{1\}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big \Vert \\ & \le \int \_\{0\}^\{1\}\tau ( 1-\tau ) \Big \vert \frac\{\int \_\{\tau \}^\{1\}p\left( s\right)\, ds\}\{1-\tau \}-\frac\{\int \_\{0\}^\{\tau \}p\left( s\right)\, ds\}\{\tau \}\Big \vert \left\Vert \nabla f\_\{\left( 1-\tau \right) A+\tau B\}\left( B-A\right) \right\Vert \,d\tau \\ & \le \frac\{1\}\{4\}\int \_\{0\}^\{1\}\Big \vert \frac\{\int \_\{\tau \}^\{1\}p\left( s\right)\, ds\}\{1-\tau \}-\frac\{\int \_\{0\}^\{\tau \}p\left( s\right)\, ds\}\{\tau \} \Big \vert \left\Vert \nabla f\_\{\left( 1-\tau \right) A+\tau B\}\left( B-A\right) \right\Vert \, d\tau \,, \end\{align*\} where $\nabla f$ is the Gateaux derivative of $f$.},
author = {Dragomir, Silvestru Sever},
journal = {Archivum Mathematicum},
keywords = {operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means},
language = {eng},
number = {3},
pages = {183-197},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Norm inequalities for the difference between weighted and integral means of operator differentiable functions},
url = {http://eudml.org/doc/297053},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Dragomir, Silvestru Sever
TI - Norm inequalities for the difference between weighted and integral means of operator differentiable functions
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 183
EP - 197
AB - Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal {SA}_{I}\left( H\right) $, the convex set of selfadjoint operators with spectra in $I$. If $A\ne B$ and $f$, as an operator function, is Gateaux differentiable on \begin{equation*} [ A,B] :=\left\lbrace ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\rbrace \,, \end{equation*} while $p\colon \left[ 0,1\right] \rightarrow \mathbb {R}$ is Lebesgue integrable, then we have the inequalities \begin{align*} \Big \Vert \int _{0}^{1}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int _{0}^{1}p\left( \tau \right) \,d\tau \int _{0}^{1}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big \Vert \\ & \le \int _{0}^{1}\tau ( 1-\tau ) \Big \vert \frac{\int _{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int _{0}^{\tau }p\left( s\right)\, ds}{\tau }\Big \vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \,d\tau \\ & \le \frac{1}{4}\int _{0}^{1}\Big \vert \frac{\int _{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int _{0}^{\tau }p\left( s\right)\, ds}{\tau } \Big \vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \, d\tau \,, \end{align*} where $\nabla f$ is the Gateaux derivative of $f$.
LA - eng
KW - operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means
UR - http://eudml.org/doc/297053
ER -

References

top
  1. Agarwal, R.P., Dragomir, S.S., 10.1016/j.camwa.2010.04.014, Comput. Math. Appl. 59 (12) (2010), 3785–3812. (2010) MR2651854DOI10.1016/j.camwa.2010.04.014
  2. Bacak, V., Vildan, T., Türkmen, R., Refinements of Hermite-Hadamard type inequalities for operator convex functions, J. Inequal. Appl. 2013 (262) (2013), 10 pp. (2013) MR3068637
  3. Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A., Some inequalities associated with the Hermite-Hadamard inequalities for operator h -convex functions, Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297. (2017) MR3745136
  4. Dragomir, S.S., Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comput. 218 (3) (2011), 766–772. (2011) MR2831305
  5. Dragomir, S.S., Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics. Springer, New York, 2012. (2012) MR2866026
  6. Dragomir, S.S., Bounds for the difference between weighted and integral means of operator convex function, RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online shttp://rgmia.org/papers/v22/v22a97.pdf]. (2019) 
  7. Dragomir, S.S., Reverses of operator Féjer’s inequalities, RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 91, [Online http://rgmia.org/papers/v22/v22a91.pdf]. (2019) 
  8. Dragomir, S.S., 10.1515/spma-2019-0005, Spec. Matrices 7 (2019), 38–51, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf]. (2019) MR3940941DOI10.1515/spma-2019-0005
  9. Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y., Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005. (2005) MR3026316
  10. Ghazanfari, A.G., 10.5373/jarpm.1876.110613, J. Adv. Res. Pure Math. 6 (3) (2014), 52–61. (2014) MR3239991DOI10.5373/jarpm.1876.110613
  11. Ghazanfari, A.G., 10.1007/s11785-016-0542-7, Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703. (2016) MR3558363DOI10.1007/s11785-016-0542-7
  12. Han, J., Shi, J., 10.22436/jnsa.010.11.38, J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041. (2017) MR3738820DOI10.22436/jnsa.010.11.38
  13. Li, B., 10.12988/ijcms.2013.13046, Int. J. Contemp. Math. Sci. 8 (9–12) (2013), 463–467. (2013) MR3106565DOI10.12988/ijcms.2013.13046
  14. Pedersen, G.K., 10.2977/prims/1195143229, Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139–157. (2000) MR1749015DOI10.2977/prims/1195143229
  15. Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S., 10.1007/s00605-015-0816-6, Monatsh. Math. 181 (1) (2016), 187–203. (2016) MR3535913DOI10.1007/s00605-015-0816-6
  16. Vivas Cortez, M., Hernández, J.E.H., 10.18576/amis/110405, Appl. Math. Inf. Sci. 11 (4) (2017), 983–992. (2017) MR3677622DOI10.18576/amis/110405
  17. Vivas Cortez, M., Hernández, J.E.H., 10.18576/amis/110507, Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307. (2017) MR3704419DOI10.18576/amis/110507
  18. Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A., 10.18576/amis/110205, Appl. Math. Inf. Sci. 11 (2) (2017), 383–392. (2017) MR3704419DOI10.18576/amis/110205
  19. Wang, S.-H., 10.22436/jnsa.010.03.22, J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125. (2017) MR3646673DOI10.22436/jnsa.010.03.22
  20. Wang, S.-H., New integral inequalities of Hermite-Hadamard type for operator m-convex and ( α , m ) -convex functions, J. Comput. Anal. Appl. 22 (4) (2017), 744–753. (2017) MR3616847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.