On Riemann-Poisson Lie groups
Brahim Alioune; Mohamed Boucetta; Ahmed Sid’Ahmed Lessiad
Archivum Mathematicum (2020)
- Volume: 056, Issue: 4, page 225-247
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAlioune, Brahim, Boucetta, Mohamed, and Sid’Ahmed Lessiad, Ahmed. "On Riemann-Poisson Lie groups." Archivum Mathematicum 056.4 (2020): 225-247. <http://eudml.org/doc/297069>.
@article{Alioune2020,
abstract = {A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.},
author = {Alioune, Brahim, Boucetta, Mohamed, Sid’Ahmed Lessiad, Ahmed},
journal = {Archivum Mathematicum},
keywords = {Lie group; Poisson manifolds; Riemannian metric},
language = {eng},
number = {4},
pages = {225-247},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Riemann-Poisson Lie groups},
url = {http://eudml.org/doc/297069},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Alioune, Brahim
AU - Boucetta, Mohamed
AU - Sid’Ahmed Lessiad, Ahmed
TI - On Riemann-Poisson Lie groups
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 4
SP - 225
EP - 247
AB - A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in [4]. We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.
LA - eng
KW - Lie group; Poisson manifolds; Riemannian metric
UR - http://eudml.org/doc/297069
ER -
References
top- Ait Haddou, M., Boucetta, M., Lebzioui, H., Left-invariant Lorentzian flat metrics on Lie groups, J. Lie Theory 22 (1) (2012), 269–289. (2012) MR2933940
- Boucetta, M., 10.1016/S0764-4442(01)02132-2, C.R. Acad. Sci. Paris Sér. I 333 (2001), 763–768. (2001) MR1868950DOI10.1016/S0764-4442(01)02132-2
- Boucetta, M., 10.1016/S1631-073X(03)00079-7, C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423–428. (2003) MR1979358DOI10.1016/S1631-073X(03)00079-7
- Boucetta, M., 10.1016/j.difgeo.2003.10.013, Differential Geom. Appl. 20 (2004), 279–291. (2004) MR2053915DOI10.1016/j.difgeo.2003.10.013
- Boucetta, M., On the Riemann-Lie algebras and Riemann-Poisson Lie groups, J. Lie Theory 15 (1) (2005), 183–195. (2005) MR2115235
- Deninger, C., Singhof, W., 10.1023/A:1015652906096, Ann. Global Anal. Geom. 21 (2002), 377–399. (2002) MR1910458DOI10.1023/A:1015652906096
- Dufour, J.P., Zung, N.T., Poisson Structures and Their Normal Forms, Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005. (2005) MR2178041
- Fernandes, R.L., 10.4310/jdg/1214341648, J. Differential Geom. 54 (2000), 303–366. (2000) MR1818181DOI10.4310/jdg/1214341648
- Ha, K.Y., Lee, J.B., 10.1002/mana.200610777, Math. Nachr. 282 (2009), 868–898. (2009) MR2530885DOI10.1002/mana.200610777
- Hawkin, E., 10.4310/jdg/1193074900, J. Differential Geom. 77 (2007), 385–424. (2007) MR2362320DOI10.4310/jdg/1193074900
- Milnor, J., 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (1976), 293–329. (1976) MR0425012DOI10.1016/S0001-8708(76)80002-3
- Ovando, G., Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory 16 (2006), 371–391. (2006) MR2197598
- Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994. (1994) Zbl0810.53019MR1269545
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.