Displaying similar documents to “On Riemann-Poisson Lie groups”

Poisson-Lie groupoids and the contraction procedure

Kenny De Commer (2015)

Banach Center Publications

Similarity:

On the level of Lie algebras, the contraction procedure is a method to create a new Lie algebra from a given Lie algebra by rescaling generators and letting the scaling parameter tend to zero. One of the most well-known examples is the contraction from 𝔰𝔲(2) to 𝔢(2), the Lie algebra of upper-triangular matrices with zero trace and purely imaginary diagonal. In this paper, we will consider an extension of this contraction by taking also into consideration the natural bialgebra structures...

Poisson–Lie sigma models on Drinfel’d double

Jan Vysoký, Ladislav Hlavatý (2012)

Archivum Mathematicum

Similarity:

Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle. The elegant form of equations of motion for so called Poisson-Lie groups is derived. Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras....

Racks and orbits of dressing transformations

A. A. Balinsky (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.

Linearization and star products

Veronique Chloup (2000)

Banach Center Publications

Similarity:

The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.