Incompressible limit of a fluid-particle interaction model

Hongli Wang; Jianwei Yang

Applications of Mathematics (2021)

  • Volume: 66, Issue: 1, page 69-86
  • ISSN: 0862-7940

Abstract

top
The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.

How to cite

top

Wang, Hongli, and Yang, Jianwei. "Incompressible limit of a fluid-particle interaction model." Applications of Mathematics 66.1 (2021): 69-86. <http://eudml.org/doc/297075>.

@article{Wang2021,
abstract = {The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.},
author = {Wang, Hongli, Yang, Jianwei},
journal = {Applications of Mathematics},
keywords = {incompressible limit; relative entropy method; fluid-particle interaction model; incompressible Navier-Stokes equation},
language = {eng},
number = {1},
pages = {69-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Incompressible limit of a fluid-particle interaction model},
url = {http://eudml.org/doc/297075},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Wang, Hongli
AU - Yang, Jianwei
TI - Incompressible limit of a fluid-particle interaction model
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 69
EP - 86
AB - The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.
LA - eng
KW - incompressible limit; relative entropy method; fluid-particle interaction model; incompressible Navier-Stokes equation
UR - http://eudml.org/doc/297075
ER -

References

top
  1. Ballew, J., Trivisa, K., 10.1090/S0033-569X-2012-01310-2, Q. Appl. Math. 70 (2012), 469-494. (2012) Zbl1418.76045MR2986131DOI10.1090/S0033-569X-2012-01310-2
  2. Ballew, J., Trivisa, K., 10.1016/j.na.2013.06.002, Nonlinear Anal., Theory Methods Appl., Ser. A 91 (2013), 1-19. (2013) Zbl1284.35303MR3081207DOI10.1016/j.na.2013.06.002
  3. Baranger, C., Boudin, L., Jabin, P.-E., Mancini, S., 10.1051/proc:2005004, ESAIM, Proc. 14 (2005), 41-47. (2005) Zbl1075.92031MR2226800DOI10.1051/proc:2005004
  4. Veiga, H. Beirão da, 10.1007/BF00387711, Arch. Ration. Mech. Anal. 128 (1994), 313-327. (1994) Zbl0829.76073MR1308856DOI10.1007/BF00387711
  5. Berres, S., Bürger, R., Karlsen, K. H., Tory, E. M., 10.1137/S0036139902408163, SIAM J. Appl. Math. 64 (2003), 41-80. (2003) Zbl1047.35071MR2029124DOI10.1137/S0036139902408163
  6. Carrillo, J. A., Goudon, T., 10.1080/03605300500394389, Commun. Partial Differ. Equations 31 (2006), 1349-1379. (2006) Zbl1105.35088MR2254618DOI10.1080/03605300500394389
  7. Carrillo, J. A., Karper, T., Trivisa, K., 10.1016/j.na.2010.12.031, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2778-2801. (2011) Zbl1214.35068MR2776527DOI10.1016/j.na.2010.12.031
  8. Chemin, J.-Y., Masmoudi, N., 10.1137/S0036141099359317, SIAM J. Math. Anal. 33 (2001), 84-112. (2001) Zbl1007.76003MR1857990DOI10.1137/S0036141099359317
  9. Chen, Y., Ding, S., Wang, W., 10.3934/dcds.2016032, Discrete Contin. Dyn. Syst. 36 (2016), 5287-5307. (2016) Zbl1353.35222MR3543548DOI10.3934/dcds.2016032
  10. Chen, Z.-M., Zhai, X., 10.1007/s00021-019-0428-3, J. Math. Fluid Mech. 21 (2019), Article ID 26, 23 pages. (2019) Zbl1416.35181MR3935027DOI10.1007/s00021-019-0428-3
  11. Constantin, P., Masmoudi, N., 10.1007/s00220-007-0384-2, Commun. Math. Phys. 278 (2008), 179-191. (2008) Zbl1147.35069MR2367203DOI10.1007/s00220-007-0384-2
  12. Danchin, R., Mucha, P. B., 10.1016/j.aim.2017.09.025, Adv. Math. 320 (2017), 904-925. (2017) Zbl1384.35058MR3709125DOI10.1016/j.aim.2017.09.025
  13. Donatelli, D., Feireisl, E., Novotný, A., 10.3934/dcdsb.2010.13.783, Discrete Contin. Dyn. Syst., Ser. B 13 (2010), 783-798. (2010) Zbl1194.35304MR2601340DOI10.3934/dcdsb.2010.13.783
  14. Evje, S., Wen, H., Zhu, C., 10.1142/S0218202517500038, Math. Models Methods Appl. Sci. 27 (2017), 323-346. (2017) Zbl1359.76291MR3606958DOI10.1142/S0218202517500038
  15. Feireisl, E., Petcu, M., 10.1016/j.jde.2019.03.006, J. Differ. Equation 267 (2019), 1836-1858. (2019) Zbl1416.35204MR3945619DOI10.1016/j.jde.2019.03.006
  16. Hsiao, L., Ju, Q., Li, F., 10.1007/s11401-008-0039-4, Chin. Ann. Math., Ser. B 30 (2009), 17-26. (2009) Zbl1181.35171MR2480811DOI10.1007/s11401-008-0039-4
  17. Huang, B., Huang, J., Wen, H., 10.1063/1.5089229, J. Math. Phys. 60 (2019), Article ID 061501, 20 pages. (2019) Zbl07082295MR3963486DOI10.1063/1.5089229
  18. Huang, F., Wang, D., Yuan, D., 10.3934/dcds.2019146, Discrete Contin. Dyn. Syst. 39 (2019), 3535-3575. (2019) Zbl1415.76638MR3959440DOI10.3934/dcds.2019146
  19. Klainerman, S., Majda, A., 10.1002/cpa.3160350503, Commun. Pure Appl. Math. 35 (1982), 629-651. (1982) Zbl0478.76091MR0668409DOI10.1002/cpa.3160350503
  20. Lin, C.-K., 10.1080/03605309508821108, Commun. Partial Differ. Equations 20 (1995), 677-707. (1995) Zbl0816.35105MR1318085DOI10.1080/03605309508821108
  21. Lions, P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications 10. Clarendon Press, Oxford (1998). (1998) Zbl0908.76004MR1637634
  22. Lions, P.-L., Masmoudi, N., 10.1016/S0021-7824(98)80139-6, J. Math. Pures Appl., IX. Sér 77 (1998), 585-627. (1998) Zbl0909.35101MR1628173DOI10.1016/S0021-7824(98)80139-6
  23. Masmoudi, N., 10.1016/S0021-7824(98)80139-6, Ann. Inst. Henri Poincaré, Anal. Non linéaire 18 (2001), 199-224. (2001) Zbl0991.35058MR1808029DOI10.1016/S0021-7824(98)80139-6
  24. Ou, Y., 10.1016/j.jde.2009.05.009, J. Differ. Equations 247 (2009), 3295-3314. (2009) Zbl1181.35177MR2571578DOI10.1016/j.jde.2009.05.009
  25. Vauchelet, N., Zatorska, E., 10.1016/j.na.2017.07.003, Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 34-59. (2017) Zbl1370.35234MR3695967DOI10.1016/j.na.2017.07.003
  26. Vinkovic, I., Aguirre, C., Simoëns, S., Gorokhovski, M., 10.1016/j.ijmultiphaseflow.2005.10.005, Int. J. Multiphase Flow 32 (2006), 344-364. (2006) Zbl1135.76570DOI10.1016/j.ijmultiphaseflow.2005.10.005
  27. Williams, F. A., 10.1063/1.1724379, Phys. Fluids 1 (1958), 541-545. (1958) Zbl0086.41102DOI10.1063/1.1724379
  28. Williams, F. A., 10.1201/9780429494055, CRC Press, Boca Raton (1985). (1985) DOI10.1201/9780429494055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.