Incompressible, inviscid limit of the compressible Navier–Stokes system

Nader Masmoudi

Annales de l'I.H.P. Analyse non linéaire (2001)

  • Volume: 18, Issue: 2, page 199-224
  • ISSN: 0294-1449

How to cite

top

Masmoudi, Nader. "Incompressible, inviscid limit of the compressible Navier–Stokes system." Annales de l'I.H.P. Analyse non linéaire 18.2 (2001): 199-224. <http://eudml.org/doc/78518>.

@article{Masmoudi2001,
author = {Masmoudi, Nader},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {compressible Navier-Stokes equations; asymptotic results; incompressible Euler equations; global weak solution; energy argument},
language = {eng},
number = {2},
pages = {199-224},
publisher = {Elsevier},
title = {Incompressible, inviscid limit of the compressible Navier–Stokes system},
url = {http://eudml.org/doc/78518},
volume = {18},
year = {2001},
}

TY - JOUR
AU - Masmoudi, Nader
TI - Incompressible, inviscid limit of the compressible Navier–Stokes system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2001
PB - Elsevier
VL - 18
IS - 2
SP - 199
EP - 224
LA - eng
KW - compressible Navier-Stokes equations; asymptotic results; incompressible Euler equations; global weak solution; energy argument
UR - http://eudml.org/doc/78518
ER -

References

top
  1. [1] Desjardins B., Grenier E., Low Mach number limit of compressible viscous flows in the whole space, Preprint. Zbl0934.76080
  2. [2] Desjardins B, Grenier E, Lions P.-L, Masmoudi N, Compressible incompressible limit with Dirichlet boundary condition, J. Math. Pures et Appl.78 (5) (1999) 461-471. Zbl0992.35067MR1697038
  3. [3] Gallagher I, A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, Preprint, 1999. 
  4. [4] Grenier E, Oscillatory perturbations of the Navier–Stokes equations, J Math. Pures et Appl. 976 (6) (1997) 477-498. Zbl0885.35090
  5. [5] Hagstrom T, Lorenz J, All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal.29 (3) (1998) 652-672. Zbl0907.76073MR1617767
  6. [6] Klainerman S, Majda A, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.34 (5) (1981) 481-524. Zbl0476.76068MR615627
  7. [7] Klainerman S, Majda A, Compressible and incompressible fluids, Comm. Pure Appl. Math.35 (5) (1982) 629-651. Zbl0478.76091MR668409
  8. [8] Kreiss H.O, Lorentz J, Naughton M.J, Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations, Adv. in Appl. Math.12 (2) (1991) 187-214. Zbl0728.76084
  9. [9] Lin C.K, On the incompressible limit of the compressible Navier–Stokes equations, Comm. Partial Differential Equations20 (3–4) (1995) 677-707. Zbl0816.35105
  10. [10] Lions P.L, Mathematical Topics in Fluid Dynamics, Vol. 1: Incompressible Models, Oxford University Press, 1996. Zbl0866.76002MR1422251
  11. [11] Lions P.L, Mathematical Topics in Fluid Dynamics, Vol. 2: Compressible Models, Oxford University Press, 1998. Zbl0908.76004MR1637634
  12. [12] Lions P.L, Masmoudi N, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl.77 (1998) 585-627. Zbl0909.35101MR1628173
  13. [13] Lions P.L, Masmoudi N, On a free boundary barotropic model, Annales de l'IHP, Analyse Non Linaire16 (1999) 373-410. Zbl0917.76073MR1687274
  14. [14] Lions P.L, Masmoudi N, Une approche locale de le limite incompressibel, C. R. Acad. Sci. Paris Sr. I Math.329 (5) (1999) 387-392. Zbl0937.35132MR1710123
  15. [15] Masmoudi N, The Euler limit of the Navier–Stokes equations, and rotating fluids with boundary, Arch. Rational Mech. Anal.142 (1998) 375-394. Zbl0915.76017
  16. [16] Masmoudi N, Ekman layers of rotating fluids, the case of general initial data, Comm. Pure Appl. Math.53 (4) (2000) 432-483. Zbl1047.76124MR1733696
  17. [17] Schochet S, Fast singular limits of hyperbolic PDEs, J. Differential Equations114 (1994) 476-512. Zbl0838.35071MR1303036
  18. [18] Ukai S, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ.26 (2) (1986) 323-331. Zbl0618.76074MR849223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.