A spatially sixth-order hybrid -CCD method for solving time fractional Schrödinger equations
Chun-Hua Zhang; Jun-Wei Jin; Hai-Wei Sun; Qin Sheng
Applications of Mathematics (2021)
- Volume: 66, Issue: 2, page 213-232
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Chun-Hua, et al. "A spatially sixth-order hybrid $L1$-CCD method for solving time fractional Schrödinger equations." Applications of Mathematics 66.2 (2021): 213-232. <http://eudml.org/doc/297086>.
@article{Zhang2021,
abstract = {We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an $L1$ strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid $L1$-CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order $2-\gamma $ in time, where $0<\gamma <1$ is the order of the Caputo fractional derivative involved. It is proved rigorously that the hybrid numerical method accomplished is unconditionally stable in the Fourier sense. Numerical experiments are carried out with typical testing problems to validate the effectiveness of the new algorithms.},
author = {Zhang, Chun-Hua, Jin, Jun-Wei, Sun, Hai-Wei, Sheng, Qin},
journal = {Applications of Mathematics},
keywords = {nonlinear time fractional Schrödinger equations; $L1$ formula; hybrid compact difference method; linearization; unconditional stability},
language = {eng},
number = {2},
pages = {213-232},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A spatially sixth-order hybrid $L1$-CCD method for solving time fractional Schrödinger equations},
url = {http://eudml.org/doc/297086},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Zhang, Chun-Hua
AU - Jin, Jun-Wei
AU - Sun, Hai-Wei
AU - Sheng, Qin
TI - A spatially sixth-order hybrid $L1$-CCD method for solving time fractional Schrödinger equations
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 213
EP - 232
AB - We consider highly accurate schemes for nonlinear time fractional Schrödinger equations (NTFSEs). While an $L1$ strategy is employed for approximating the Caputo fractional derivative in the temporal direction, compact CCD finite difference approaches are incorporated in the space. A highly effective hybrid $L1$-CCD method is implemented successfully. The accuracy of this linearized scheme is order six in space, and order $2-\gamma $ in time, where $0<\gamma <1$ is the order of the Caputo fractional derivative involved. It is proved rigorously that the hybrid numerical method accomplished is unconditionally stable in the Fourier sense. Numerical experiments are carried out with typical testing problems to validate the effectiveness of the new algorithms.
LA - eng
KW - nonlinear time fractional Schrödinger equations; $L1$ formula; hybrid compact difference method; linearization; unconditional stability
UR - http://eudml.org/doc/297086
ER -
References
top- Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., 10.1142/8180, Series on Complexity, Nonlinearity and Chaos 5. World Scientific, Hackensack (2012). (2012) Zbl1248.26011MR2894576DOI10.1142/8180
- Benson, D. A., Schumer, R., Meerschaert, M. M., Wheatcraft, S. W., 10.1023/A:1006733002131, Transp. Porous Media 42 (2001), 211-240. (2001) MR1948593DOI10.1023/A:1006733002131
- Bhrawy, A. H., Doha, E. H., Ezz-Eldien, S. S., Gorder, R. A. Van, 10.1140/epjp/i2014-14260-6, Eur. Phys. J. Plus 129 (2014), Article ID 260, 21 pages. (2014) MR2930392DOI10.1140/epjp/i2014-14260-6
- Bratsos, A. G., 10.1007/BF02941979, Korean J. Comput. Appl. Math. 8 (2001), 459-467. (2001) Zbl1015.65042MR1848910DOI10.1007/BF02941979
- Chang, Q., Jia, E., Sun, W., 10.1006/jcph.1998.6120, J. Comput. Phys. 148 (1999), 397-415. (1999) Zbl0923.65059MR1669707DOI10.1006/jcph.1998.6120
- Chen, X., Di, Y., Duan, J., Li, D., 10.1016/j.aml.2018.05.007, Appl. Math. Lett. 84 (2018), 160-167. (2018) Zbl06892656MR3808513DOI10.1016/j.aml.2018.05.007
- Chen, B., He, D., Pan, K., 10.4208/nmtma.OA-2017-0090, Numer. Math., Theory Methods Appl. 11 (2018), 299-320. (2018) Zbl1424.65124MR3849456DOI10.4208/nmtma.OA-2017-0090
- Chen, B., He, D., Pan, K., 10.1080/00207160.2018.1478415, Int. J. Comput. Math. 96 (2019), 992-1004. (2019) MR3911287DOI10.1080/00207160.2018.1478415
- Chu, P. C., Fan, C., 10.1006/jcph.1998.5899, J. Comput. Phys. 140 (1998), 370-399. (1998) Zbl0923.65071MR1616146DOI10.1006/jcph.1998.5899
- Cui, M., 10.1016/j.jcp.2009.07.021, J. Comput. Phys. 228 (2009), 7792-7804. (2009) Zbl1179.65107MR2561843DOI10.1016/j.jcp.2009.07.021
- Dehghan, M., Taleei, A., 10.1016/j.cpc.2009.08.015, Comput. Phys. Commun. 181 (2010), 43-51. (2010) Zbl1206.65207MR2575184DOI10.1016/j.cpc.2009.08.015
- Feynman, R. P., Hibbs, A. R., Quantum Mechanics and Path Integrals, Dover Publications, New York (2010). (2010) Zbl1220.81156MR2797644
- Gao, G.-H., Sun, H.-W., 10.4208/cicp.180314.010914a, Commun. Comput. Phys. 17 (2015), 487-509. (2015) Zbl1388.65052MR3371511DOI10.4208/cicp.180314.010914a
- Gao, G.-H., Sun, H.-W., 10.1016/j.jcp.2015.05.052, J. Comput. Phys. 298 (2015), 520-538. (2015) Zbl1349.65294MR3374563DOI10.1016/j.jcp.2015.05.052
- Gao, G.-H., Sun, H.-W., Sun, Z.-Z., 10.1016/j.jcp.2014.09.033, J. Comput. Phys. 280 (2015), 510-528. (2015) Zbl1349.65295MR3273149DOI10.1016/j.jcp.2014.09.033
- Gao, G.-H., Sun, Z.-Z., 10.1016/j.jcp.2010.10.007, J. Comput. Phys. 230 (2011), 586-595. (2011) Zbl1211.65112MR2745445DOI10.1016/j.jcp.2010.10.007
- Gao, G.-H., Sun, Z.-Z., Zhang, H.-W., 10.1016/j.jcp.2013.11.017, J. Comput. Phys. 259 (2014), 33-50. (2014) Zbl1349.65088MR3148558DOI10.1016/j.jcp.2013.11.017
- Golmankhaneh, A. K., Baleanu, D., 10.1515/9783110472097-019, Fractional Dynamics De Gruyter, Berlin (2015), 307-332. (2015) Zbl1333.00024MR3468175DOI10.1515/9783110472097-019
- He, D., 10.1007/s11075-015-0082-7, Numer. Algorithms 72 (2016), 1103-1117. (2016) Zbl1350.65088MR3529835DOI10.1007/s11075-015-0082-7
- He, D., Pan, K., 10.4208/eajam.200816.300517a, East Asian J. Appl. Math. 7 (2017), 714-727. (2017) Zbl1426.76471MR3766403DOI10.4208/eajam.200816.300517a
- He, D., Pan, K., 10.1016/j.camwa.2017.04.009, Comput. Math. Appl. 73 (2017), 2360-2374. (2017) Zbl1373.65056MR3648018DOI10.1016/j.camwa.2017.04.009
- Jones, T. N., Sheng, Q., 10.1016/j.jcp.2019.04.046, J. Comput. Phys. 392 (2019), 403-418. (2019) MR3948727DOI10.1016/j.jcp.2019.04.046
- Khan, N. A., Jamil, M., Ara, A., 10.5402/2012/197068, Int. Sch. Res. Not. 2012 (2012), Article ID 197068, 11 pages. (2012) DOI10.5402/2012/197068
- Klages, R., Radons, G., (eds.), I. M. Sokolov, 10.1002/9783527622979, Wiley, Weinheim (2008). (2008) DOI10.1002/9783527622979
- Laskin, N., 10.1016/S0375-9601(00)00201-2, Phys. Lett., A 268 (2000), 298-305. (2000) Zbl0948.81595MR1755089DOI10.1016/S0375-9601(00)00201-2
- Lee, S. T., Liu, J., Sun, H.-W., 10.1016/j.cam.2014.01.004, J. Comput. Appl. Math. 264 (2014), 23-37. (2014) Zbl1294.65098MR3164100DOI10.1016/j.cam.2014.01.004
- Li, L. Z., Sun, H.-W., Tam, S.-C., 10.1016/j.cpc.2014.10.008, Comput. Phys. Commun. 187 (2015), 38-48. (2015) Zbl1348.35238MR3283134DOI10.1016/j.cpc.2014.10.008
- Li, D., Wang, J., Zhang, J., 10.1137/16M1105700, SIAM. J. Sci. Comput. 39 (2017), A3067--A3088. (2017) Zbl1379.65079MR3738320DOI10.1137/16M1105700
- Liao, H.-L., Shi, H.-S., Zhao, Y., 10.1016/j.cpc.2014.05.002, Comput. Phys. Commun. 185 (2014), 2240-2249. (2014) Zbl1344.35137MR3211950DOI10.1016/j.cpc.2014.05.002
- Mohebbi, A., Abbaszadeh, M., Dehghan, M., 10.1016/j.enganabound.2012.12.002, Eng. Anal. Bound. Elem. 37 (2013), 475-485. (2013) Zbl1352.65397MR3018826DOI10.1016/j.enganabound.2012.12.002
- Murio, D. A., 10.1016/j.camwa.2008.02.015, Comput. Math. Appl. 56 (2008), 1138-1145. (2008) Zbl1155.65372MR2437884DOI10.1016/j.camwa.2008.02.015
- Naber, M., 10.1063/1.1769611, J. Math. Phys. 45 (2004), 3339-3352. (2004) Zbl1071.81035MR2077514DOI10.1063/1.1769611
- Rida, S. Z., El-Sherbiny, H. M., Arafa, A. A. M., 10.1016/j.physleta.2007.06.071, Phys. Lett., A 372 (2008), 553-558. (2008) Zbl1217.81068MR2378723DOI10.1016/j.physleta.2007.06.071
- Scalas, E., Gorenflo, R., Mainardi, F., 10.1016/S0378-4371(00)00255-7, Phys. A 284 (2000), 376-384. (2000) MR1773804DOI10.1016/S0378-4371(00)00255-7
- Shivanian, E., Jafarabadi, A., 10.1002/num.22126, Numer. Methods Partial Differ. Equations 33 (2017), 1043-1069. (2017) Zbl1379.65082MR3652177DOI10.1002/num.22126
- Sun, H.-W., Li, L. Z., 10.1016/j.cpc.2013.11.009, Comput. Phys. Commun. 185 (2014), 790-797. (2014) Zbl1360.35193MR3161142DOI10.1016/j.cpc.2013.11.009
- Sun, Z.-Z., Wu, X., 10.1016/j.apnum.2005.03.003, Appl. Numer. Math. 56 (2006), 193-209. (2006) Zbl1094.65083MR2200938DOI10.1016/j.apnum.2005.03.003
- Wang, Y.-M., Ren, L., 10.1080/00207160.2018.1437262, Int. J. Comput. Math. 96 (2019), 264-297. (2019) MR3893479DOI10.1080/00207160.2018.1437262
- Wang, Z., Vong, S., 10.1016/j.jcp.2014.08.012, J. Comput. Phys. 277 (2014), 1-15. (2014) Zbl1349.65348MR3254221DOI10.1016/j.jcp.2014.08.012
- Wei, L., He, Y., Zhang, X., Wang, S., 10.1016/j.finel.2012.03.008, Finite Elem. Anal. Des. 59 (2012), 28-34. (2012) MR2949417DOI10.1016/j.finel.2012.03.008
- Xu, Y., Zhang, L., 10.1016/j.cpc.2012.01.006, Comput. Phys. Commun. 183 (2012), 1082-1093. (2012) Zbl1277.65073MR2888993DOI10.1016/j.cpc.2012.01.006
- Zhu, L., Sheng, Q., 10.1016/j.cam.2020.112714, J. Comput. Appl. Math. 374 (2020), Article ID 112714, 14 pages. (2020) Zbl1435.65136MR4066721DOI10.1016/j.cam.2020.112714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.