The study on semicopula based implications

Zuming Peng

Kybernetika (2020)

  • Volume: 56, Issue: 4, page 662-694
  • ISSN: 0023-5954

Abstract

top
Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a ( U , N )-implication. Moreover, the case that the semicopula based implication is 2-increasing (directionally decreasing, respectively) is also considered.

How to cite

top

Peng, Zuming. "The study on semicopula based implications." Kybernetika 56.4 (2020): 662-694. <http://eudml.org/doc/297090>.

@article{Peng2020,
abstract = {Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a ($U,N$)-implication. Moreover, the case that the semicopula based implication is 2-increasing (directionally decreasing, respectively) is also considered.},
author = {Peng, Zuming},
journal = {Kybernetika},
keywords = {fuzzy implications; semicopula based implications; ($U,N$)-implications; semicopula; 2-increasing},
language = {eng},
number = {4},
pages = {662-694},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The study on semicopula based implications},
url = {http://eudml.org/doc/297090},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Peng, Zuming
TI - The study on semicopula based implications
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 662
EP - 694
AB - Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a ($U,N$)-implication. Moreover, the case that the semicopula based implication is 2-increasing (directionally decreasing, respectively) is also considered.
LA - eng
KW - fuzzy implications; semicopula based implications; ($U,N$)-implications; semicopula; 2-increasing
UR - http://eudml.org/doc/297090
ER -

References

top
  1. Baczyński, M., Jayaram, B., 10.1016/j.fss.2007.02.010, Fuzzy Sets Systems. 158 (2007), 1713-1727. MR2341333DOI10.1016/j.fss.2007.02.010
  2. Baczyński, M., Jayaram, B., Fuzzy Implications., Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl1293.03012
  3. Baczyński, M., Jayaram, B., 10.1016/j.fss.2007.11.015, Fuzzy Sets Systems 159 (2008), 1836-1859. MR2428086DOI10.1016/j.fss.2007.11.015
  4. Baczyński, M., Jayaram, B., 10.1016/j.fss.2008.09.021, Fuzzy Sets Systems 161 (2010), 158-188. MR2566237DOI10.1016/j.fss.2008.09.021
  5. Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W., 10.1016/j.fss.2016.09.009, Fuzzy Sets Systems 323 (2017), 138-151. MR3660830DOI10.1016/j.fss.2016.09.009
  6. Baczyński, M., Beliakov, G., Sola, H. B., Pradera, A., 10.1007/978-3-642-35677-3, Springer-Verlag, Berlin 2013. DOI10.1007/978-3-642-35677-3
  7. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R., 10.1016/j.ejor.2015.01.018, Europ. J. Oper. Res. 244 (2015), 300-308. MR3320787DOI10.1016/j.ejor.2015.01.018
  8. Durante, F., Sempi, C., Semicopulae., Kybernetika 41 (2005), 315-328. Zbl1249.26021MR2181421
  9. Fodor, J. C., 10.1016/0165-0114(94)00210-x, Fuzzy Sets Systems 69 (1995), 141-156. MR1317882DOI10.1016/0165-0114(94)00210-x
  10. Grzegorzewski, P., 10.1016/j.fss.2013.01.003, Fuzzy Sets Systems 226 (2013), 53-66. MR3068353DOI10.1016/j.fss.2013.01.003
  11. Jenei, S., A new approach for interpolation and extrapolation of compact fuzzy quantities., In: Proc. 21th Linz Seminar on Fuzzy Set Theory 2000, pp. 13-18. 
  12. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  13. Liu, H., 10.1142/s0218488512500018, Int. J. Uncert. Fuzziness Knowl. Based Systems 20 (2012), 1-20. MR2887551DOI10.1142/s0218488512500018
  14. Liu, H., 10.1109/tfuzz.2012.2222892, IEEE Trans. Fuzzy Systems 21 (2013), 555-566. DOI10.1109/tfuzz.2012.2222892
  15. Mas, M., Monserrat, M., Torrens, J., Trillas, E., 10.1109/tfuzz.2007.896304, IEEE Trans. Fuzzy Systems 15 (2007), 1107-1121. DOI10.1109/tfuzz.2007.896304
  16. Massanet, S., Torrens, J., 10.1016/j.ins.2011.01.030, Inform. Sci. 181 (2011), 2111-2127. MR2781774DOI10.1016/j.ins.2011.01.030
  17. Massanet, S., Torrens, J., 10.1016/j.fss.2012.01.013, Fuzzy Sets Systems 205 (2012), 50-75. MR2960107DOI10.1016/j.fss.2012.01.013
  18. Massanet, S., Torrens, J., 10.1016/j.fss.2012.01.018, Fuzzy Sets Systems 205 (2012), 30-49. MR2960106DOI10.1016/j.fss.2012.01.018
  19. Massanet, S., Torrens, J., 10.1016/j.fss.2013.03.003, Fuzzy Sets Systems 226 (2013), 32-52. MR3068352DOI10.1016/j.fss.2013.03.003
  20. Nelsen, R. B., 10.1007/0-387-28678-0, Springer, New York 2006. MR2197664DOI10.1007/0-387-28678-0
  21. Ouyang, Y., 10.1016/j.ins.2012.01.001, Inform. Sci. 193 (2012), 153-162. MR2900399DOI10.1016/j.ins.2012.01.001
  22. Peng, Z., 10.1016/0165-0114(94)90082-5, Iran. J. Fuzzy Systems 17 (2020), 129-145. MR4155840DOI10.1016/0165-0114(94)90082-5
  23. Pradera, A., 10.1007/978-3-642-39165-1_6, Adv. Intell. Systems Comput. 228 (2013), 31-36. MR3588160DOI10.1007/978-3-642-39165-1_6
  24. Pradera, A., Beliakov, G., Bustince, H., Baets, B. De, 10.1016/j.ins.2015.09.033, Inform. Sci. 329 (2016), 357-380. DOI10.1016/j.ins.2015.09.033
  25. Su, Y., Xie, A., Liu, H., 10.1016/j.ins.2014.09.021, Inform. Sci. 293 (2015), 251-262. MR3273566DOI10.1016/j.ins.2014.09.021
  26. Yager, R. R., 10.1016/j.ins.2003.04.001, Inform. Sci. 167 (2004), 193-216. MR2103181DOI10.1016/j.ins.2003.04.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.