On the -conditionality of -power based implications
Kybernetika (2022)
- Volume: 58, Issue: 1, page 43-63
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPeng, Zuming. "On the $T$-conditionality of $T$-power based implications." Kybernetika 58.1 (2022): 43-63. <http://eudml.org/doc/298132>.
@article{Peng2022,
abstract = {It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^\{T\}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^\{T\}$ is $T^\{\ast \}$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^\{\ast \}$ such that the power based implication $I^\{T\}$ is $T^\{\ast \}$-conditional.},
author = {Peng, Zuming},
journal = {Kybernetika},
keywords = {$T$-power based implications; $T$-conditionality; t-norms; generalized modus ponens},
language = {eng},
number = {1},
pages = {43-63},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the $T$-conditionality of $T$-power based implications},
url = {http://eudml.org/doc/298132},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Peng, Zuming
TI - On the $T$-conditionality of $T$-power based implications
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 43
EP - 63
AB - It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^{T}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^{T}$ is $T^{\ast }$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^{\ast }$ such that the power based implication $I^{T}$ is $T^{\ast }$-conditional.
LA - eng
KW - $T$-power based implications; $T$-conditionality; t-norms; generalized modus ponens
UR - http://eudml.org/doc/298132
ER -
References
top- Alsina, C., Trillas, E., , Fuzzy Sets Systems 134 (2003), 305-310. MR1969106DOI
- Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W., , Fuzzy Sets Systems 323 (2017), 138-151. MR3660830DOI
- Baczyński, M., Jayaram, B., Fuzzy Implications, Studies in Fuzziness and Soft Computing., Springer, Berlin, Heidelberg 2008. MR2428086
- Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing., Springer, Berlin, Heidelberg 2013. MR3024762
- Bustince, H., Pagola, M., Barrenechea, E., , Inform. Sci. 177 (2007), 906-929. MR2287148DOI
- Clouaire, R. M., , BUSEFAL 18 (1984), 75-82. DOI
- Driankov, D., Hellendoorn, H., Reinfrank, M., An Introduction to Fuzzy Control., Springer, Berlin, Heidelberg 1993.
- Fodor, J. C., Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support, Theory and Decision Library, Serie D: System Theory, Knowledge Engineering and Problem Solving., Kluwer Academic Publishers, Dordrecht 1994.
- Grzegorzewski, P., , Fuzzy Sets Systems 226 (2013), 53-66. MR3068353DOI
- Hellendoorn, H., , Fuzzy Sets and Systems 46 (1992), 29-48. MR1153590DOI
- Hilletofth, P., Sequeira, M., Adlemo, A., , Expert Systems Appl. 126 (2019), 133-143. DOI
- Ivánek, J., , Kybernetika 53 (2017), 113-128. MR3638559DOI
- Kerre, E., Nachtegael, M., Fuzzy Techniques in Image Processing., Springer, New York 2000.
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096
- Kolesárová, A., Massanet, S., Mesiar, R., Riera, J. V., Torrens, J., , Inform. Sci. 494 (2019), 60-79. MR3888811DOI
- Li, W. H., Qin, F., Xie, A. F., , Fuzzy Sets Systems 431 (2022), 129-142. MR4379860DOI
- Mas, M., Monserrat, M., Torrens, J., , Int. J. Approx. Reasoning 49 (2008), 422-435. MR2460278DOI
- Massanet, S., Recasens, J., Torrens, J., , Int. J. Approx. Reasoning 83 (2017), 265-279. MR3614257DOI
- Massanet, S., Recasens, J., Torrens, J., , Int. J. Approx. Reasoning 104 (2019), 144-147. MR3876214DOI
- Massanet, S., Recasens, J., Torrens, J., , Fuzzy Sets Systems 359 (2019), 42-62. MR3913077DOI
- Mizumoto, M., Zimmermann, H. J., , Fuzzy Sets Systtems 8 (1982), 253-283. MR0669417DOI
- Peralta, R. F., Massanet, S., Mir, A., , Fuzzy Sets Systems 423 (2021), 1-28. MR4310510DOI
- Peng, Z., A new family of (A, N)-implications: construction and properties., Iranian J. Fuzzy Systems 17 (2020), 2, 129-145. MR4155840
- Peng, Z., , Kybernetika 56 (2020), 4, 662-694. MR4168530DOI
- Pota, M., Esposito, M., Pietro, G. D., , International Journal of Approximate Reasoning 93 (2018) 88-102. MR3754531DOI
- Pradera, A., Massanet, S., Ruiz, D., Torrens, J., , Int. J. Comput. Intell. Systems 13 (2020), 1, 201-211. DOI
- Trillas, E., Alsina, C., Pradera, A., On MPT-implication functions for fuzzy logic., Rev. R. Acad. Cienc. Ser. A. Mat. (RACSAM) 98 (2004), 1, 259-271. MR2136170
- Trillas, E., Alsina, C., Renedo, E., Pradera, A., , Int. J. Intell. Systems 20 (2005), 313-326. MR1198778DOI
- Trillas, E., Valverde, L., , Read. Fuzzy Sets Intell. Systems (1993), 97-104. DOI
- Yager, R. R., , Inform. Sci. 167 (2004), 193-216. MR2103181DOI
- Yan, P., Chen, G., , Inform. Sci. 173 (2005), 319-336. MR2149681DOI
- Zadeh, L. A., , IEEE Trans. Syst. Man Cybernet. 3 (1973), 28-44. MR0309582DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.