On the T -conditionality of T -power based implications

Zuming Peng

Kybernetika (2022)

  • Volume: 58, Issue: 1, page 43-63
  • ISSN: 0023-5954

Abstract

top
It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of T -conditionality. In this paper, the T -conditionality for T -power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication I T being T -conditional are obtained. Moreover, the sufficient conditions under which a power based implication I T is T * -conditional are discussed, this discussions give an ideas to construct a t-norm T * such that the power based implication I T is T * -conditional.

How to cite

top

Peng, Zuming. "On the $T$-conditionality of $T$-power based implications." Kybernetika 58.1 (2022): 43-63. <http://eudml.org/doc/298132>.

@article{Peng2022,
abstract = {It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^\{T\}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^\{T\}$ is $T^\{\ast \}$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^\{\ast \}$ such that the power based implication $I^\{T\}$ is $T^\{\ast \}$-conditional.},
author = {Peng, Zuming},
journal = {Kybernetika},
keywords = {$T$-power based implications; $T$-conditionality; t-norms; generalized modus ponens},
language = {eng},
number = {1},
pages = {43-63},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the $T$-conditionality of $T$-power based implications},
url = {http://eudml.org/doc/298132},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Peng, Zuming
TI - On the $T$-conditionality of $T$-power based implications
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 43
EP - 63
AB - It is well known that, in forward inference in fuzzy logic, the generalized modus ponens is guaranteed by a functional inequality called the law of $T$-conditionality. In this paper, the $T$-conditionality for $T$-power based implications is deeply studied and the concise necessary and sufficient conditions for a power based implication $I^{T}$ being $T$-conditional are obtained. Moreover, the sufficient conditions under which a power based implication $I^{T}$ is $T^{\ast }$-conditional are discussed, this discussions give an ideas to construct a t-norm $T^{\ast }$ such that the power based implication $I^{T}$ is $T^{\ast }$-conditional.
LA - eng
KW - $T$-power based implications; $T$-conditionality; t-norms; generalized modus ponens
UR - http://eudml.org/doc/298132
ER -

References

top
  1. Alsina, C., Trillas, E., , Fuzzy Sets Systems 134 (2003), 305-310. MR1969106DOI
  2. Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W., , Fuzzy Sets Systems 323 (2017), 138-151. MR3660830DOI
  3. Baczyński, M., Jayaram, B., Fuzzy Implications, Studies in Fuzziness and Soft Computing., Springer, Berlin, Heidelberg 2008. MR2428086
  4. Bede, B., Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing., Springer, Berlin, Heidelberg 2013. MR3024762
  5. Bustince, H., Pagola, M., Barrenechea, E., , Inform. Sci. 177 (2007), 906-929. MR2287148DOI
  6. Clouaire, R. M., , BUSEFAL 18 (1984), 75-82. DOI
  7. Driankov, D., Hellendoorn, H., Reinfrank, M., An Introduction to Fuzzy Control., Springer, Berlin, Heidelberg 1993. 
  8. Fodor, J. C., Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support, Theory and Decision Library, Serie D: System Theory, Knowledge Engineering and Problem Solving., Kluwer Academic Publishers, Dordrecht 1994. 
  9. Grzegorzewski, P., , Fuzzy Sets Systems 226 (2013), 53-66. MR3068353DOI
  10. Hellendoorn, H., , Fuzzy Sets and Systems 46 (1992), 29-48. MR1153590DOI
  11. Hilletofth, P., Sequeira, M., Adlemo, A., , Expert Systems Appl. 126 (2019), 133-143. DOI
  12. Ivánek, J., , Kybernetika 53 (2017), 113-128. MR3638559DOI
  13. Kerre, E., Nachtegael, M., Fuzzy Techniques in Image Processing., Springer, New York 2000. 
  14. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer, Dordrecht 2000. Zbl1087.20041MR1790096
  15. Kolesárová, A., Massanet, S., Mesiar, R., Riera, J. V., Torrens, J., , Inform. Sci. 494 (2019), 60-79. MR3888811DOI
  16. Li, W. H., Qin, F., Xie, A. F., , Fuzzy Sets Systems 431 (2022), 129-142. MR4379860DOI
  17. Mas, M., Monserrat, M., Torrens, J., , Int. J. Approx. Reasoning 49 (2008), 422-435. MR2460278DOI
  18. Massanet, S., Recasens, J., Torrens, J., , Int. J. Approx. Reasoning 83 (2017), 265-279. MR3614257DOI
  19. Massanet, S., Recasens, J., Torrens, J., , Int. J. Approx. Reasoning 104 (2019), 144-147. MR3876214DOI
  20. Massanet, S., Recasens, J., Torrens, J., , Fuzzy Sets Systems 359 (2019), 42-62. MR3913077DOI
  21. Mizumoto, M., Zimmermann, H. J., , Fuzzy Sets Systtems 8 (1982), 253-283. MR0669417DOI
  22. Peralta, R. F., Massanet, S., Mir, A., , Fuzzy Sets Systems 423 (2021), 1-28. MR4310510DOI
  23. Peng, Z., A new family of (A, N)-implications: construction and properties., Iranian J. Fuzzy Systems 17 (2020), 2, 129-145. MR4155840
  24. Peng, Z., , Kybernetika 56 (2020), 4, 662-694. MR4168530DOI
  25. Pota, M., Esposito, M., Pietro, G. D., , International Journal of Approximate Reasoning 93 (2018) 88-102. MR3754531DOI
  26. Pradera, A., Massanet, S., Ruiz, D., Torrens, J., , Int. J. Comput. Intell. Systems 13 (2020), 1, 201-211. DOI
  27. Trillas, E., Alsina, C., Pradera, A., On MPT-implication functions for fuzzy logic., Rev. R. Acad. Cienc. Ser. A. Mat. (RACSAM) 98 (2004), 1, 259-271. MR2136170
  28. Trillas, E., Alsina, C., Renedo, E., Pradera, A., , Int. J. Intell. Systems 20 (2005), 313-326. MR1198778DOI
  29. Trillas, E., Valverde, L., , Read. Fuzzy Sets Intell. Systems (1993), 97-104. DOI
  30. Yager, R. R., , Inform. Sci. 167 (2004), 193-216. MR2103181DOI
  31. Yan, P., Chen, G., , Inform. Sci. 173 (2005), 319-336. MR2149681DOI
  32. Zadeh, L. A., , IEEE Trans. Syst. Man Cybernet. 3 (1973), 28-44. MR0309582DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.