Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral
Salvador Sánchez-Perales; Francisco J. Mendoza-Torres
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 519-537
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSánchez-Perales, Salvador, and Mendoza-Torres, Francisco J.. "Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral." Czechoslovak Mathematical Journal 70.2 (2020): 519-537. <http://eudml.org/doc/297095>.
@article{Sánchez2020,
abstract = {In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y^\{\prime \prime \}+qy=f$, where $q$ and $f$ are Henstock-Kurzweil integrable functions on $[a,b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral.},
author = {Sánchez-Perales, Salvador, Mendoza-Torres, Francisco J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock-Kurzweil integral; Schrödinger operator; $\{\rm ACG\}_\{*\}$-function; bounded variation function},
language = {eng},
number = {2},
pages = {519-537},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral},
url = {http://eudml.org/doc/297095},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Sánchez-Perales, Salvador
AU - Mendoza-Torres, Francisco J.
TI - Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 519
EP - 537
AB - In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y^{\prime \prime }+qy=f$, where $q$ and $f$ are Henstock-Kurzweil integrable functions on $[a,b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral.
LA - eng
KW - Henstock-Kurzweil integral; Schrödinger operator; ${\rm ACG}_{*}$-function; bounded variation function
UR - http://eudml.org/doc/297095
ER -
References
top- Bartle, R. G., 10.1090/gsm/032, Graduate Studies in Mathematics 32, AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext, Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4, AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Peral, I., Primer Curso de Ecuaciones en Derivadas Parciales, Addison Wesley, Boston (1995), Spanish. (1995)
- Sánchez-Perales, S., The initial value problem for the Schrödinger equation involving the Henstock-Kurzweil integral, Rev. Unión Mat. Argent. 58 (2017), 297-306. (2017) Zbl1382.34096MR3733209
- Swartz, C., 10.2307/44152964, Real Anal. Exch. 24 (1998), 423-426. (1998) Zbl0943.26022MR1691761DOI10.2307/44152964
- Talvila, E., 10.1215/ijm/1258138475, Ill. J. Math. 46 (2002), 1207-1226. (2002) Zbl1037.42007MR1988259DOI10.1215/ijm/1258138475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.