A unified analysis of elliptic problems with various boundary conditions and their approximation
Jérôme Droniou; Robert Eymard; Thierry Gallouët; Raphaèle Herbin
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 339-368
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDroniou, Jérôme, et al. "A unified analysis of elliptic problems with various boundary conditions and their approximation." Czechoslovak Mathematical Journal 70.2 (2020): 339-368. <http://eudml.org/doc/297097>.
@article{Droniou2020,
abstract = {We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.},
author = {Droniou, Jérôme, Eymard, Robert, Gallouët, Thierry, Herbin, Raphaèle},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic problem; various boundary conditions; gradient discretisation method; Leray-Lions problem},
language = {eng},
number = {2},
pages = {339-368},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A unified analysis of elliptic problems with various boundary conditions and their approximation},
url = {http://eudml.org/doc/297097},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Droniou, Jérôme
AU - Eymard, Robert
AU - Gallouët, Thierry
AU - Herbin, Raphaèle
TI - A unified analysis of elliptic problems with various boundary conditions and their approximation
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 339
EP - 368
AB - We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.
LA - eng
KW - elliptic problem; various boundary conditions; gradient discretisation method; Leray-Lions problem
UR - http://eudml.org/doc/297097
ER -
References
top- Andreianov, B., Boyer, F., Hubert, F., 10.1007/s00211-005-0591-8, Numer. Math. 100 (2005), 565-592. (2005) Zbl1106.65098MR2194585DOI10.1007/s00211-005-0591-8
- Andreianov, B., Boyer, F., Hubert, F., 10.1093/imanum/dri047, IMA J. Numer. Anal. 26 (2006), 472-502. (2006) Zbl1113.65104MR2241311DOI10.1093/imanum/dri047
- Andreianov, B., Boyer, F., Hubert, F., 10.1051/proc:071801, ESAIM Proc. 18 (2007), 1-10. (2007) Zbl1241.65089MR2404891DOI10.1051/proc:071801
- Andreianov, B., Boyer, F., Hubert, F., 10.1002/num.20170, Numer. Methods Partial Differ. Equations 23 (2007), 145-195. (2007) Zbl1111.65101MR2275464DOI10.1002/num.20170
- Antonietti, P. F., Bigoni, N., Verani, M., 10.1007/s10092-014-0107-y, Calcolo 52 (2015), 45-67. (2015) Zbl1316.65092MR3313588DOI10.1007/s10092-014-0107-y
- Barrett, J. W., Liu., W. B., 10.2307/2153239, Math. Comput. 61 (1993), 523-537. (1993) Zbl0791.65084MR1192966DOI10.2307/2153239
- Barrett, J. W., Liu, W. B., 10.1137/0731022, SIAM J. Numer. Anal. 31 (1994), 413-428. (1994) Zbl0805.65097MR1276708DOI10.1137/0731022
- Barrett, J. W., Liu, W. B., 10.1007/s002110050071, Numer. Math. 68 (1994), 437-456. (1994) Zbl0811.76036MR1301740DOI10.1007/s002110050071
- Beurling, A., Livingston, A. E., 10.1007/BF02591622, Ark. Mat. 4 (1962), 405-411. (1962) Zbl0105.09301MR0145320DOI10.1007/BF02591622
- Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R., 10.1007/s00211-015-0782-x, Numer. Math. 134 (2016), 569-609. (2016) Zbl1358.76069MR3555349DOI10.1007/s00211-015-0782-x
- Brezis, H., 10.1007/978-0-387-70914-7, Universitext, Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
- Browder, F. E., 10.4153/CJM-1965-037-2, Can. J. Math. 17 (1965), 367-372. (1965) Zbl0132.10602MR0176320DOI10.4153/CJM-1965-037-2
- Browder, F. E., Figueiredo, D. G. de, 10.1007/978-3-319-02856-9_1, Djairo G. de Figueiredo. Selected Papers D. G. Costa Springer, Cham (2013), 1-9. (2013) Zbl1285.01003MR3223088DOI10.1007/978-3-319-02856-9_1
- Burman, E., Ern, A., 10.1016/j.crma.2008.07.005, C. R. Math. Acad. Sci. Paris 346 (2008), 1013-1016. (2008) Zbl1152.65073MR2449647DOI10.1016/j.crma.2008.07.005
- P. G. Ciarlet, P. Ciarlet, Jr., 10.1142/S0218202505000352, Math. Models Methods Appl. Sci. 15 (2005), 259-271. (2005) Zbl1084.74006MR2119999DOI10.1142/S0218202505000352
- Deimling, K., 10.1007/978-3-662-00547-7, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404DOI10.1007/978-3-662-00547-7
- Pietro, D. A. Di, Droniou, J., 10.1090/mcom/3180, Math. Comput. 86 (2017), 2159-2191. (2017) Zbl1364.65224MR3647954DOI10.1090/mcom/3180
- Droniou, J., 10.1051/m2an:2007001, ESAIM Math. Model. Numer. Anal. 40 (2006), 1069-1100. (2006) Zbl1117.65154MR2297105DOI10.1051/m2an:2007001
- Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R., 10.1007/978-3-319-79042-8, Mathematics & Applications 82, Springer, Cham (2018). (2018) Zbl06897811MRR3898702DOI10.1007/978-3-319-79042-8
- Eymard, R., Gallouët, T., Herbin, R., 10.1515/JNUM.2009.010, J. Numer. Math. 17 (2009), 173-193. (2009) Zbl1179.65138MR2573566DOI10.1515/JNUM.2009.010
- Eymard, R., Guichard, C., 10.1007/s40314-017-0558-2, Comput. Appl. Math. 37 (2018), 4023-4054. (2018) Zbl1402.65156MR3848524DOI10.1007/s40314-017-0558-2
- Glazyrina, L. L., Pavlova, M. F., On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482-499 Russian. (2016) MR3659692
- Glowinski, R., Rappaz, J., 10.1051/m2an:2003012, M2AN Math. Model. Numer. Anal. 37 (2003), 175-186. (2003) Zbl1046.76002MR1972657DOI10.1051/m2an:2003012
- Kato, T., 978-3-642-66282-9_3, Perturbation Theory for Linear Operators Classics in Mathematics, Springer, Berlin (1995), 126-188. (1995) Zbl0836.47009MR1335452DOI978-3-642-66282-9_3
- Leray, J., Lions, J.-L., 10.24033/bsmf.1617, Bull. Soc. Math. Fr. 93 (1965), 97-107 French. (1965) Zbl0132.10502MR0194733DOI10.24033/bsmf.1617
- Lindenstrauss, J., 10.1090/S0002-9904-1966-11606-3, Bull. Am. Math. Soc. 72 (1966), 967-970. (1966) Zbl0156.36403MR0205040DOI10.1090/S0002-9904-1966-11606-3
- Liu, W. B., Barrett, J. W., 10.1016/0362-546X(93)90081-3, Nonlinear Anal., Theory Methods Appl. 21 (1993), 379-387. (1993) Zbl0856.35017MR1237129DOI10.1016/0362-546X(93)90081-3
- Liu, W. B., Barrett, J. W., 10.1006/jmaa.1993.1319, J. Math. Anal. Appl. 178 (1993), 470-487. (1993) Zbl0799.35085MR1238889DOI10.1006/jmaa.1993.1319
- Minty, G. J., 10.1073/pnas.50.6.1038, Proc. Natl. Acad. Sci. USA 50 (1963), 1038-1041. (1963) Zbl0124.07303MR0162159DOI10.1073/pnas.50.6.1038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.