A unified analysis of elliptic problems with various boundary conditions and their approximation

Jérôme Droniou; Robert Eymard; Thierry Gallouët; Raphaèle Herbin

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 339-368
  • ISSN: 0011-4642

Abstract

top
We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.

How to cite

top

Droniou, Jérôme, et al. "A unified analysis of elliptic problems with various boundary conditions and their approximation." Czechoslovak Mathematical Journal 70.2 (2020): 339-368. <http://eudml.org/doc/297097>.

@article{Droniou2020,
abstract = {We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.},
author = {Droniou, Jérôme, Eymard, Robert, Gallouët, Thierry, Herbin, Raphaèle},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic problem; various boundary conditions; gradient discretisation method; Leray-Lions problem},
language = {eng},
number = {2},
pages = {339-368},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A unified analysis of elliptic problems with various boundary conditions and their approximation},
url = {http://eudml.org/doc/297097},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Droniou, Jérôme
AU - Eymard, Robert
AU - Gallouët, Thierry
AU - Herbin, Raphaèle
TI - A unified analysis of elliptic problems with various boundary conditions and their approximation
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 339
EP - 368
AB - We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.
LA - eng
KW - elliptic problem; various boundary conditions; gradient discretisation method; Leray-Lions problem
UR - http://eudml.org/doc/297097
ER -

References

top
  1. Andreianov, B., Boyer, F., Hubert, F., 10.1007/s00211-005-0591-8, Numer. Math. 100 (2005), 565-592. (2005) Zbl1106.65098MR2194585DOI10.1007/s00211-005-0591-8
  2. Andreianov, B., Boyer, F., Hubert, F., 10.1093/imanum/dri047, IMA J. Numer. Anal. 26 (2006), 472-502. (2006) Zbl1113.65104MR2241311DOI10.1093/imanum/dri047
  3. Andreianov, B., Boyer, F., Hubert, F., 10.1051/proc:071801, ESAIM Proc. 18 (2007), 1-10. (2007) Zbl1241.65089MR2404891DOI10.1051/proc:071801
  4. Andreianov, B., Boyer, F., Hubert, F., 10.1002/num.20170, Numer. Methods Partial Differ. Equations 23 (2007), 145-195. (2007) Zbl1111.65101MR2275464DOI10.1002/num.20170
  5. Antonietti, P. F., Bigoni, N., Verani, M., 10.1007/s10092-014-0107-y, Calcolo 52 (2015), 45-67. (2015) Zbl1316.65092MR3313588DOI10.1007/s10092-014-0107-y
  6. Barrett, J. W., Liu., W. B., 10.2307/2153239, Math. Comput. 61 (1993), 523-537. (1993) Zbl0791.65084MR1192966DOI10.2307/2153239
  7. Barrett, J. W., Liu, W. B., 10.1137/0731022, SIAM J. Numer. Anal. 31 (1994), 413-428. (1994) Zbl0805.65097MR1276708DOI10.1137/0731022
  8. Barrett, J. W., Liu, W. B., 10.1007/s002110050071, Numer. Math. 68 (1994), 437-456. (1994) Zbl0811.76036MR1301740DOI10.1007/s002110050071
  9. Beurling, A., Livingston, A. E., 10.1007/BF02591622, Ark. Mat. 4 (1962), 405-411. (1962) Zbl0105.09301MR0145320DOI10.1007/BF02591622
  10. Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R., 10.1007/s00211-015-0782-x, Numer. Math. 134 (2016), 569-609. (2016) Zbl1358.76069MR3555349DOI10.1007/s00211-015-0782-x
  11. Brezis, H., 10.1007/978-0-387-70914-7, Universitext, Springer, New York (2011). (2011) Zbl1220.46002MR2759829DOI10.1007/978-0-387-70914-7
  12. Browder, F. E., 10.4153/CJM-1965-037-2, Can. J. Math. 17 (1965), 367-372. (1965) Zbl0132.10602MR0176320DOI10.4153/CJM-1965-037-2
  13. Browder, F. E., Figueiredo, D. G. de, 10.1007/978-3-319-02856-9_1, Djairo G. de Figueiredo. Selected Papers D. G. Costa Springer, Cham (2013), 1-9. (2013) Zbl1285.01003MR3223088DOI10.1007/978-3-319-02856-9_1
  14. Burman, E., Ern, A., 10.1016/j.crma.2008.07.005, C. R. Math. Acad. Sci. Paris 346 (2008), 1013-1016. (2008) Zbl1152.65073MR2449647DOI10.1016/j.crma.2008.07.005
  15. P. G. Ciarlet, P. Ciarlet, Jr., 10.1142/S0218202505000352, Math. Models Methods Appl. Sci. 15 (2005), 259-271. (2005) Zbl1084.74006MR2119999DOI10.1142/S0218202505000352
  16. Deimling, K., 10.1007/978-3-662-00547-7, Springer, Berlin (1985). (1985) Zbl0559.47040MR0787404DOI10.1007/978-3-662-00547-7
  17. Pietro, D. A. Di, Droniou, J., 10.1090/mcom/3180, Math. Comput. 86 (2017), 2159-2191. (2017) Zbl1364.65224MR3647954DOI10.1090/mcom/3180
  18. Droniou, J., 10.1051/m2an:2007001, ESAIM Math. Model. Numer. Anal. 40 (2006), 1069-1100. (2006) Zbl1117.65154MR2297105DOI10.1051/m2an:2007001
  19. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R., 10.1007/978-3-319-79042-8, Mathematics & Applications 82, Springer, Cham (2018). (2018) Zbl06897811MRR3898702DOI10.1007/978-3-319-79042-8
  20. Eymard, R., Gallouët, T., Herbin, R., 10.1515/JNUM.2009.010, J. Numer. Math. 17 (2009), 173-193. (2009) Zbl1179.65138MR2573566DOI10.1515/JNUM.2009.010
  21. Eymard, R., Guichard, C., 10.1007/s40314-017-0558-2, Comput. Appl. Math. 37 (2018), 4023-4054. (2018) Zbl1402.65156MR3848524DOI10.1007/s40314-017-0558-2
  22. Glazyrina, L. L., Pavlova, M. F., On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482-499 Russian. (2016) MR3659692
  23. Glowinski, R., Rappaz, J., 10.1051/m2an:2003012, M2AN Math. Model. Numer. Anal. 37 (2003), 175-186. (2003) Zbl1046.76002MR1972657DOI10.1051/m2an:2003012
  24. Kato, T., 978-3-642-66282-9_3, Perturbation Theory for Linear Operators Classics in Mathematics, Springer, Berlin (1995), 126-188. (1995) Zbl0836.47009MR1335452DOI978-3-642-66282-9_3
  25. Leray, J., Lions, J.-L., 10.24033/bsmf.1617, Bull. Soc. Math. Fr. 93 (1965), 97-107 French. (1965) Zbl0132.10502MR0194733DOI10.24033/bsmf.1617
  26. Lindenstrauss, J., 10.1090/S0002-9904-1966-11606-3, Bull. Am. Math. Soc. 72 (1966), 967-970. (1966) Zbl0156.36403MR0205040DOI10.1090/S0002-9904-1966-11606-3
  27. Liu, W. B., Barrett, J. W., 10.1016/0362-546X(93)90081-3, Nonlinear Anal., Theory Methods Appl. 21 (1993), 379-387. (1993) Zbl0856.35017MR1237129DOI10.1016/0362-546X(93)90081-3
  28. Liu, W. B., Barrett, J. W., 10.1006/jmaa.1993.1319, J. Math. Anal. Appl. 178 (1993), 470-487. (1993) Zbl0799.35085MR1238889DOI10.1006/jmaa.1993.1319
  29. Minty, G. J., 10.1073/pnas.50.6.1038, Proc. Natl. Acad. Sci. USA 50 (1963), 1038-1041. (1963) Zbl0124.07303MR0162159DOI10.1073/pnas.50.6.1038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.