Nonexistence of entire positive solution for a conformal k -Hessian inequality

Feida Jiang; Saihua Cui; Gang Li

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 311-322
  • ISSN: 0011-4642

Abstract

top
In this paper, we study the nonexistence of entire positive solution for a conformal k -Hessian inequality in n via the method of proof by contradiction.

How to cite

top

Jiang, Feida, Cui, Saihua, and Li, Gang. "Nonexistence of entire positive solution for a conformal $k$-Hessian inequality." Czechoslovak Mathematical Journal 70.2 (2020): 311-322. <http://eudml.org/doc/297101>.

@article{Jiang2020,
abstract = {In this paper, we study the nonexistence of entire positive solution for a conformal $k$-Hessian inequality in $\mathbb \{R\}^n$ via the method of proof by contradiction.},
author = {Jiang, Feida, Cui, Saihua, Li, Gang},
journal = {Czechoslovak Mathematical Journal},
keywords = {conformal Hessian inequality; entire positive solution},
language = {eng},
number = {2},
pages = {311-322},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonexistence of entire positive solution for a conformal $k$-Hessian inequality},
url = {http://eudml.org/doc/297101},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Jiang, Feida
AU - Cui, Saihua
AU - Li, Gang
TI - Nonexistence of entire positive solution for a conformal $k$-Hessian inequality
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 311
EP - 322
AB - In this paper, we study the nonexistence of entire positive solution for a conformal $k$-Hessian inequality in $\mathbb {R}^n$ via the method of proof by contradiction.
LA - eng
KW - conformal Hessian inequality; entire positive solution
UR - http://eudml.org/doc/297101
ER -

References

top
  1. Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pur. Appl., IX. Sér. 55 (1976), 269-296 French. (1976) Zbl0336.53033MR0431287
  2. Aubin, T., 10.4310/jdg/1214433725, J. Diff. Geom. 11 (1976), 573-598 French. (1976) Zbl0371.46011MR0448404DOI10.4310/jdg/1214433725
  3. Bao, J., Ji, X., Li, H., 10.1016/j.jde.2012.06.018, J. Differ. Equations 253 (2012), 2140-2160. (2012) Zbl1260.35044MR2946967DOI10.1016/j.jde.2012.06.018
  4. Brezis, H., 10.1007/BF01449045, Appl. Math. Optimization 12 (1984), 271-282. (1984) Zbl0562.35035MR0768633DOI10.1007/BF01449045
  5. Caffarelli, L., Gidas, B., Spruck, J., 10.1002/cpa.3160420304, Commun. Pure Appl. Math. 42 (1989), 271-297. (1989) Zbl0702.35085MR0982351DOI10.1002/cpa.3160420304
  6. Caffarelli, L., Nirenberg, L., Spruck, J., 10.1007/BF02392544, Acta Math. 155 (1985), 261-301. (1985) Zbl0654.35031MR0806416DOI10.1007/BF02392544
  7. Gidas, B., Spruck, J., 10.1002/cpa.3160340406, Commun. Pure Appl. Math. 34 (1981), 525-598. (1981) Zbl0465.35003MR0615628DOI10.1002/cpa.3160340406
  8. Ji, X., Bao, J., 10.1090/S0002-9939-09-10032-1, Proc. Am. Math. Soc. 138 (2010), 175-188. (2010) Zbl1180.35234MR2550182DOI10.1090/S0002-9939-09-10032-1
  9. Jiang, F., Trudinger, N. S., 10.1007/s13373-018-0124-2, Bull. Math. Sci. 8 (2018), 353-411. (2018) Zbl1411.35116MR3826768DOI10.1007/s13373-018-0124-2
  10. Jiang, F., Trudinger, N. S., Yang, X.-P., 10.1016/j.jde.2014.11.005, J. Differ. Equations 258 (2015), 1548-1576. (2015) Zbl1309.35027MR3295592DOI10.1016/j.jde.2014.11.005
  11. Jin, Q., Li, Y., Xu, H., 10.4310/MAA.2005.v12.n4.a5, Methods Appl. Anal. 12 (2005), 441-449. (2005) Zbl1143.35322MR2258318DOI10.4310/MAA.2005.v12.n4.a5
  12. Keller, J. B., 10.1002/cpa.3160100402, Commun. Pure Appl. Math. 10 (1957), 503-510. (1957) Zbl0090.31801MR0091407DOI10.1002/cpa.3160100402
  13. Li, A., Li, Y. Y., 10.1007/BF02588052, Acta Math. 195 (2005), 117-154. (2005) Zbl1216.35038MR2233687DOI10.1007/BF02588052
  14. Lieberman, G. M., 10.1142/3302, World Scientific Publishing, Singapore (1996). (1996) Zbl0884.35001MR1465184DOI10.1142/3302
  15. Loewner, C., Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers Academic Press, New York (1974), 245-272. (1974) Zbl0298.35018MR0358078
  16. Osserman, R., 10.2140/pjm.1957.7.1641, Pac. J. Math. 7 (1957), 1641-1647. (1957) Zbl0083.09402MR0098239DOI10.2140/pjm.1957.7.1641
  17. Ou, Q., 10.4310/MAA.2010.v17.n2.a5, Methods Appl. Anal. 17 (2010), 213-224. (2010) Zbl1211.35293MR2763578DOI10.4310/MAA.2010.v17.n2.a5
  18. Ou, Q., 10.2140/pjm.2013.266.117, Pac. J. Math. 266 (2013), 117-128. (2013) Zbl1284.35179MR3105779DOI10.2140/pjm.2013.266.117
  19. Ou, Q., A note on nonexistence of conformal Hessian inequalities, Adv. Math., Beijing 46 (2017), 154-158. (2017) Zbl1389.26062MR3627002
  20. Schoen, R., 10.4310/jdg/1214439291, J. Differ. Geom. 20 (1984), 479-495. (1984) Zbl0576.53028MR0788292DOI10.4310/jdg/1214439291
  21. Sheng, W., Trudinger, N. S., Wang, X.-J., 10.4310/SDG.2012.v17.n1.a10, Surv. Differ. Geom. 17 (2012), 427-457. (2012) Zbl1382.53013MR3076067DOI10.4310/SDG.2012.v17.n1.a10
  22. Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 265-274. (1968) Zbl0159.23801MR0240748
  23. Trudinger, N. S., 10.4171/022-3/15, International Congress of Mathematicians. Vol. III European Mathematical Society, Zürich (2006), 291-302. (2006) Zbl1130.35058MR2275682DOI10.4171/022-3/15
  24. Viaclovsky, J. A., 10.1215/S0012-7094-00-10127-5, Duke Math. J. 101 (2000), 283-316. (2000) Zbl0990.53035MR1738176DOI10.1215/S0012-7094-00-10127-5
  25. Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37. (1960) Zbl0096.37201MR0125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.