Page 1

Displaying 1 – 6 of 6

Showing per page

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

Thomas Bartsch, Peter Poláčik, Pavol Quittner (2011)

Journal of the European Mathematical Society

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation u t = Δ u + u p - 1 u . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.

Multiple end solutions to the Allen-Cahn equation in 2

Michał Kowalczyk, Yong Liu, Frank Pacard (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

An entire solution of the Allen-Cahn equation Δ u = f ( u ) , where f is an odd function and has exactly three zeros at ± 1 and 0 , e.g. f ( u ) = u ( u 2 - 1 ) , is called a 2 k end solution if its nodal set is asymptotic to 2 k half lines, and if along each of these half lines the function u looks (up to a multiplication by - 1 ) like the one dimensional, odd, heteroclinic solution H , of H ' ' = f ( H ) . In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions....

Currently displaying 1 – 6 of 6

Page 1