Semisymmetrization and Mendelsohn quasigroups
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 4, page 553-566
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSmith, Jonathan D. H.. "Semisymmetrization and Mendelsohn quasigroups." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 553-566. <http://eudml.org/doc/297116>.
@article{Smith2020,
abstract = {The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.},
author = {Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semisymmetric; quasigroup; Mendelsohn triple system},
language = {eng},
number = {4},
pages = {553-566},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semisymmetrization and Mendelsohn quasigroups},
url = {http://eudml.org/doc/297116},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Smith, Jonathan D. H.
TI - Semisymmetrization and Mendelsohn quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 553
EP - 566
AB - The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.
LA - eng
KW - semisymmetric; quasigroup; Mendelsohn triple system
UR - http://eudml.org/doc/297116
ER -
References
top- Chernousov V., Elduque A., Knus M.-A., Tignol J.-P., Algebraic groups of type , triality, and composition algebras, Doc. Math. 18 (2013), 413–468. MR3084556
- Colbourn C. J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
- Curtis R. T., A classification of Howard Eve's `equihoops', preprint, Bowdoin College, Brunswick, ME, 1979.
- Donovan D. M., Griggs T. S, McCourt T. S., Opršal J., Stanovský D., 10.4153/CMB-2015-053-2, Canad. Math. Bull. 59 (2016), no. 1, 36–49. MR3451896DOI10.4153/CMB-2015-053-2
- Drápal A., 10.1007/s10587-005-0004-2, Czechoslovak Math. J. 55 (2005), no. 1, 61–86. MR2121656DOI10.1007/s10587-005-0004-2
- Goračinova-Ilieva L., Markovski S., Construction of Mendelsohn designs by using quasigroups of -varieties, Comment. Math. Univ. Carolin. 57 (2016), no. 4, 501–514. MR3583302
- Holshouser A., Klein B., Reiter H., The commutative equihoop and the card game SET, Pi Mu Epsilon J. 14 (2015), no. 3, 175-–190. MR3445104
- Im B., Ko H.-J., Smith J. D. H., 10.11650/twjm/1500404884, Taiwanese J. Math. 11 (2007), no. 5, 1529–1534. MR2368669DOI10.11650/twjm/1500404884
- Im B., Nowak A. W., Smith J. D. H., 10.1016/j.jpaa.2020.106539, J. Pure Appl. Algebra 225 (2021), no. 3, 106539, 35 pages. MR4137718DOI10.1016/j.jpaa.2020.106539
- Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers (a division of John Wiley & Sons), New York, 1962. Zbl0333.17009MR0143793
- Ježek J., Kepka T., Quasigroups, isotopic to a group, Comment. Math. Univ. Carolinae 16 (1975), 59–-76. MR0367103
- Krapež A., Petrić Z., A note on semisymmetry, Quasigroups Related Systems 25 (2017), no. 2, 269–278. MR3738007
- MacLane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1971. Zbl0705.18001MR0354798
- Mal'cev A. I., Multiplication of classes of algebraic systems, Sibirsk. Mat. Ž. 8 (1967), 346–365 (Russian); translated in Siberian Math. J. 8 (1967), 54–-267; The metamathematics of algebraic systems. Collected papers: 1936–1967; translated by B. F. Wells, III., Studies in Logic and the Foundations of Mathematics, 66, North-Holland Publishing, Amsterdam, 1971, pages 422-–446. MR0213276
- Mendelsohn N. S., A natural generalization of Steiner triple systems, Computers in number theory, Proc. Sci. Res. Council Atlas Sympos., No. 2, Oxford, 1969, Academic Press, London, 1971, pages 323–338. MR0321755
- Nowak A., Distributive Mendelsohn triple systems and the Eisenstein integers, available at arXiv: 1908.04966 [math.CO] (2019), 30 pages. MR4158514
- Okubo S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, Cambridge, 1995. MR1356224
- Okubo S., Osborn J. M., 10.1080/00927878108822644, Comm. Algebra 9 (1981), no. 12, 1233–1261. MR0618901DOI10.1080/00927878108822644
- Paige L. J., 10.1090/S0002-9939-1956-0079596-1, Proc. Amer. Math. Soc. 7 (1956), 471–482. Zbl0070.25302MR0079596DOI10.1090/S0002-9939-1956-0079596-1
- Petersson H. P., 10.1007/BF01111407, Math. Z. 109 (1969), 217–238 (German). MR0242910DOI10.1007/BF01111407
- Romanowska A. B., Smith J. D. H., Modal Theory: An Algebraic Approach to Order, Geomtery, and Convexity, Research and Exposition in Mathematics, 9, Heldermann, Berlin, 1985. MR0788695
- Romanowska A. B., Smith J. D. H., Modes, World Scientific Publishing Co., River Edge, 2002. Zbl1060.08009MR1932199
- Shcherbacov V., Elements of Quasigroup Theory and Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR3644366
- Smith J. D. H., 10.1007/BFb0095447, Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. Zbl0344.08002MR0432511DOI10.1007/BFb0095447
- Smith J. D. H., 10.1007/s000120050046, Algebra Universalis 38 (1997), no. 2, 175–184. MR1608968DOI10.1007/s000120050046
- Smith J. D. H., An Introduction to Quasigroups and Their Representations, Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, 2007. Zbl1122.20035MR2268350
- Smith J. D. H., Four lectures on quasigroup representations, Quasigroups Related Systems 15 (2007), no. 1, 109–140. MR2379128
- Smith J. D. H., Evans' normal form theorem revisited, Internat. J. Algebra Comput. 17 (2007), no. 8, 1577–1592. MR2378053
- Smith J. D. H., 10.1142/S0218196708004846, Internat. J. Algebra Comput. 18 (2008), no. 7, 1203–1221. MR2468744DOI10.1142/S0218196708004846
- Smith J. D. H., Romanowska A. B., Post-Modern Algebra, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1999. Zbl0946.00001MR1673047
- Smith J. D. H., Vojtěchovský P., Okubo quasigroups, preprint, 2019.
- Soublin J.-P., Médiations, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A115-–A117 (French). MR0200374
- Stein S. K., 10.1090/S0002-9947-1957-0094404-6, Trans. Amer. Math. Soc. 85 (1957), 228-–256. MR0094404DOI10.1090/S0002-9947-1957-0094404-6
- Zorn M., 10.1007/BF02940661, Abh. Math. Sem. Univ. Hamburg 9 (1933), 395–402 (German). MR3069613DOI10.1007/BF02940661
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.