Semisymmetrization and Mendelsohn quasigroups

Jonathan D. H. Smith

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 4, page 553-566
  • ISSN: 0010-2628

Abstract

top
The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.

How to cite

top

Smith, Jonathan D. H.. "Semisymmetrization and Mendelsohn quasigroups." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 553-566. <http://eudml.org/doc/297116>.

@article{Smith2020,
abstract = {The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.},
author = {Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semisymmetric; quasigroup; Mendelsohn triple system},
language = {eng},
number = {4},
pages = {553-566},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semisymmetrization and Mendelsohn quasigroups},
url = {http://eudml.org/doc/297116},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Smith, Jonathan D. H.
TI - Semisymmetrization and Mendelsohn quasigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 553
EP - 566
AB - The semisymmetrization of an arbitrary quasigroup builds a semisymmetric quasigroup structure on the cube of the underlying set of the quasigroup. It serves to reduce homotopies to homomorphisms. An alternative semisymmetrization on the square of the underlying set was recently introduced by A. Krapež and Z. Petrić. Their construction in fact yields a Mendelsohn quasigroup, which is idempotent as well as semisymmetric. We describe it as the Mendelsohnization of the original quasigroup. For quasigroups isotopic to an abelian group, the relation between the semisymmetrization and the Mendelsohnization is studied. It is shown that the semisymmetrization is the total space for an action of the Mendelsohnization on the abelian group. The Mendelsohnization of an abelian group isotope is then identified as the idempotent replica of its semisymmetrization, with fibers isomorphic to the abelian group.
LA - eng
KW - semisymmetric; quasigroup; Mendelsohn triple system
UR - http://eudml.org/doc/297116
ER -

References

top
  1. Chernousov V., Elduque A., Knus M.-A., Tignol J.-P., Algebraic groups of type D 4 , triality, and composition algebras, Doc. Math. 18 (2013), 413–468. MR3084556
  2. Colbourn C. J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
  3. Curtis R. T., A classification of Howard Eve's `equihoops', preprint, Bowdoin College, Brunswick, ME, 1979. 
  4. Donovan D. M., Griggs T. S, McCourt T. S., Opršal J., Stanovský D., 10.4153/CMB-2015-053-2, Canad. Math. Bull. 59 (2016), no. 1, 36–49. MR3451896DOI10.4153/CMB-2015-053-2
  5. Drápal A., 10.1007/s10587-005-0004-2, Czechoslovak Math. J. 55 (2005), no. 1, 61–86. MR2121656DOI10.1007/s10587-005-0004-2
  6. Goračinova-Ilieva L., Markovski S., Construction of Mendelsohn designs by using quasigroups of ( 2 , q ) -varieties, Comment. Math. Univ. Carolin. 57 (2016), no. 4, 501–514. MR3583302
  7. Holshouser A., Klein B., Reiter H., The commutative equihoop and the card game SET, Pi Mu Epsilon J. 14 (2015), no. 3, 175-–190. MR3445104
  8. Im B., Ko H.-J., Smith J. D. H., 10.11650/twjm/1500404884, Taiwanese J. Math. 11 (2007), no. 5, 1529–1534. MR2368669DOI10.11650/twjm/1500404884
  9. Im B., Nowak A. W., Smith J. D. H., 10.1016/j.jpaa.2020.106539, J. Pure Appl. Algebra 225 (2021), no. 3, 106539, 35 pages. MR4137718DOI10.1016/j.jpaa.2020.106539
  10. Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience Publishers (a division of John Wiley & Sons), New York, 1962. Zbl0333.17009MR0143793
  11. Ježek J., Kepka T., Quasigroups, isotopic to a group, Comment. Math. Univ. Carolinae 16 (1975), 59–-76. MR0367103
  12. Krapež A., Petrić Z., A note on semisymmetry, Quasigroups Related Systems 25 (2017), no. 2, 269–278. MR3738007
  13. MacLane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1971. Zbl0705.18001MR0354798
  14. Mal'cev A. I., Multiplication of classes of algebraic systems, Sibirsk. Mat. Ž. 8 (1967), 346–365 (Russian); translated in Siberian Math. J. 8 (1967), 54–-267; The metamathematics of algebraic systems. Collected papers: 1936–1967; translated by B. F. Wells, III., Studies in Logic and the Foundations of Mathematics, 66, North-Holland Publishing, Amsterdam, 1971, pages 422-–446. MR0213276
  15. Mendelsohn N. S., A natural generalization of Steiner triple systems, Computers in number theory, Proc. Sci. Res. Council Atlas Sympos., No. 2, Oxford, 1969, Academic Press, London, 1971, pages 323–338. MR0321755
  16. Nowak A., Distributive Mendelsohn triple systems and the Eisenstein integers, available at arXiv: 1908.04966 [math.CO] (2019), 30 pages. MR4158514
  17. Okubo S., Introduction to Octonion and Other Non-Associative Algebras in Physics, Montroll Memorial Lecture Series in Mathematical Physics, 2, Cambridge University Press, Cambridge, 1995. MR1356224
  18. Okubo S., Osborn J. M., 10.1080/00927878108822644, Comm. Algebra 9 (1981), no. 12, 1233–1261. MR0618901DOI10.1080/00927878108822644
  19. Paige L. J., 10.1090/S0002-9939-1956-0079596-1, Proc. Amer. Math. Soc. 7 (1956), 471–482. Zbl0070.25302MR0079596DOI10.1090/S0002-9939-1956-0079596-1
  20. Petersson H. P., 10.1007/BF01111407, Math. Z. 109 (1969), 217–238 (German). MR0242910DOI10.1007/BF01111407
  21. Romanowska A. B., Smith J. D. H., Modal Theory: An Algebraic Approach to Order, Geomtery, and Convexity, Research and Exposition in Mathematics, 9, Heldermann, Berlin, 1985. MR0788695
  22. Romanowska A. B., Smith J. D. H., Modes, World Scientific Publishing Co., River Edge, 2002. Zbl1060.08009MR1932199
  23. Shcherbacov V., Elements of Quasigroup Theory and Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR3644366
  24. Smith J. D. H., 10.1007/BFb0095447, Lecture Notes in Mathematics, 554, Springer, Berlin, 1976. Zbl0344.08002MR0432511DOI10.1007/BFb0095447
  25. Smith J. D. H., 10.1007/s000120050046, Algebra Universalis 38 (1997), no. 2, 175–184. MR1608968DOI10.1007/s000120050046
  26. Smith J. D. H., An Introduction to Quasigroups and Their Representations, Studies in Advanced Mathematics, Chapman and Hall/CRC, Boca Raton, 2007. Zbl1122.20035MR2268350
  27. Smith J. D. H., Four lectures on quasigroup representations, Quasigroups Related Systems 15 (2007), no. 1, 109–140. MR2379128
  28. Smith J. D. H., Evans' normal form theorem revisited, Internat. J. Algebra Comput. 17 (2007), no. 8, 1577–1592. MR2378053
  29. Smith J. D. H., 10.1142/S0218196708004846, Internat. J. Algebra Comput. 18 (2008), no. 7, 1203–1221. MR2468744DOI10.1142/S0218196708004846
  30. Smith J. D. H., Romanowska A. B., Post-Modern Algebra, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1999. Zbl0946.00001MR1673047
  31. Smith J. D. H., Vojtěchovský P., Okubo quasigroups, preprint, 2019. 
  32. Soublin J.-P., Médiations, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A115-–A117 (French). MR0200374
  33. Stein S. K., 10.1090/S0002-9947-1957-0094404-6, Trans. Amer. Math. Soc. 85 (1957), 228-–256. MR0094404DOI10.1090/S0002-9947-1957-0094404-6
  34. Zorn M., 10.1007/BF02940661, Abh. Math. Sem. Univ. Hamburg 9 (1933), 395–402 (German). MR3069613DOI10.1007/BF02940661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.