On multiplication groups of relatively free quasigroups isotopic to Abelian groups

Aleš Drápal

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 1, page 61-86
  • ISSN: 0011-4642

Abstract

top
If Q is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group M l t Q is a Frobenius group. Conversely, if M l t Q is a Frobenius group, Q a quasigroup, then Q has to be isotopic to an Abelian group. If Q is, in addition, finite, then it must be a central quasigroup (a T -quasigroup).

How to cite

top

Drápal, Aleš. "On multiplication groups of relatively free quasigroups isotopic to Abelian groups." Czechoslovak Mathematical Journal 55.1 (2005): 61-86. <http://eudml.org/doc/30927>.

@article{Drápal2005,
abstract = {If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop \{\mathrm \{M\}lt\}Q$ is a Frobenius group. Conversely, if $\mathop \{\mathrm \{M\}lt\}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).},
author = {Drápal, Aleš},
journal = {Czechoslovak Mathematical Journal},
keywords = {central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups; central quasigroups; -quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups},
language = {eng},
number = {1},
pages = {61-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On multiplication groups of relatively free quasigroups isotopic to Abelian groups},
url = {http://eudml.org/doc/30927},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Drápal, Aleš
TI - On multiplication groups of relatively free quasigroups isotopic to Abelian groups
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 61
EP - 86
AB - If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm {M}lt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm {M}lt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
LA - eng
KW - central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups; central quasigroups; -quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups
UR - http://eudml.org/doc/30927
ER -

References

top
  1. 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. (1943) Zbl0063.00039MR0009962DOI10.1090/S0002-9947-1943-0009962-7
  2. Balanced identities in quasigroups, Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) (1966) Zbl0199.05203MR0202898
  3. Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967. (1967) MR0218483
  4. T -quasigroups and the centre of a quasigroup, Matem. Issled. 111 (1989), 24–43. (Russian) (1989) MR1045383
  5. Abelian quasigroups and T -quasigroups, Quasigroups and related systems 1 (1994), 1–7. (1994) MR1327941
  6. A Survey of Binary Systems, Springer-Verlag, 1971. (1971) MR0093552
  7. Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. (1990) MR1125806
  8. Multiplication groups of free loops  I, Czechoslovak Math.  J. 46 (1996), 121–131. (1996) MR1371694
  9. Multiplication groups of free loops  II, Czechoslovak Math.  J. 46 (1996), 201–220. (1996) MR1388610
  10. 10.1006/jabr.2000.8472, J.  Algebra 235 (2001), 154–175. (2001) MR1807660DOI10.1006/jabr.2000.8472
  11. 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191–206. (2002) MR1883500DOI10.1007/s605-002-8256-2
  12. Universal Algebra, Van Nostrand, Princeton, 1968. (1968) MR0248066
  13. Quasigroups isotopic to a group, Comment. Math. Univ. Carolin. 16 (1975), 59–76. (1975) MR0367103
  14. Normal subsets of quasigroups, Comment. Math. Univ. Carolin. 16 (1975), 77–85. (1975) MR0367104
  15. Univerzální algebra a teorie modelů, SNTL, Praha, 1976. (1976) MR0546057
  16. T -quasigroups  I, Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. (1971) MR0320206
  17. T -quasigroups  II, Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. (1971) MR0654381
  18. Mal’cev Varieties, Springer, Berlin, 1976. (1976) Zbl0344.08002MR0432511

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.