On multiplication groups of relatively free quasigroups isotopic to Abelian groups
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 1, page 61-86
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDrápal, Aleš. "On multiplication groups of relatively free quasigroups isotopic to Abelian groups." Czechoslovak Mathematical Journal 55.1 (2005): 61-86. <http://eudml.org/doc/30927>.
@article{Drápal2005,
abstract = {If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop \{\mathrm \{M\}lt\}Q$ is a Frobenius group. Conversely, if $\mathop \{\mathrm \{M\}lt\}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).},
author = {Drápal, Aleš},
journal = {Czechoslovak Mathematical Journal},
keywords = {central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups; central quasigroups; -quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups},
language = {eng},
number = {1},
pages = {61-86},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On multiplication groups of relatively free quasigroups isotopic to Abelian groups},
url = {http://eudml.org/doc/30927},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Drápal, Aleš
TI - On multiplication groups of relatively free quasigroups isotopic to Abelian groups
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 1
SP - 61
EP - 86
AB - If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm {M}lt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm {M}lt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
LA - eng
KW - central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups; central quasigroups; -quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups
UR - http://eudml.org/doc/30927
ER -
References
top- 10.1090/S0002-9947-1943-0009962-7, Trans. Amer. Math. Soc. 54 (1943), 507–519. (1943) Zbl0063.00039MR0009962DOI10.1090/S0002-9947-1943-0009962-7
- Balanced identities in quasigroups, Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) (1966) Zbl0199.05203MR0202898
- Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967. (1967) MR0218483
- -quasigroups and the centre of a quasigroup, Matem. Issled. 111 (1989), 24–43. (Russian) (1989) MR1045383
- Abelian quasigroups and -quasigroups, Quasigroups and related systems 1 (1994), 1–7. (1994) MR1327941
- A Survey of Binary Systems, Springer-Verlag, 1971. (1971) MR0093552
- Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. (1990) MR1125806
- Multiplication groups of free loops I, Czechoslovak Math. J. 46 (1996), 121–131. (1996) MR1371694
- Multiplication groups of free loops II, Czechoslovak Math. J. 46 (1996), 201–220. (1996) MR1388610
- 10.1006/jabr.2000.8472, J. Algebra 235 (2001), 154–175. (2001) MR1807660DOI10.1006/jabr.2000.8472
- 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191–206. (2002) MR1883500DOI10.1007/s605-002-8256-2
- Universal Algebra, Van Nostrand, Princeton, 1968. (1968) MR0248066
- Quasigroups isotopic to a group, Comment. Math. Univ. Carolin. 16 (1975), 59–76. (1975) MR0367103
- Normal subsets of quasigroups, Comment. Math. Univ. Carolin. 16 (1975), 77–85. (1975) MR0367104
- Univerzální algebra a teorie modelů, SNTL, Praha, 1976. (1976) MR0546057
- -quasigroups I, Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. (1971) MR0320206
- -quasigroups II, Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. (1971) MR0654381
- Mal’cev Varieties, Springer, Berlin, 1976. (1976) Zbl0344.08002MR0432511
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.