q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu; Victor J. W. Guo

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 757-765
  • ISSN: 0011-4642

Abstract

top
We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

How to cite

top

Gu, Cheng-Yang, and Guo, Victor J. W.. "$q$-analogues of two supercongruences of Z.-W. Sun." Czechoslovak Mathematical Journal 70.3 (2020): 757-765. <http://eudml.org/doc/297125>.

@article{Gu2020,
abstract = {We give several different $q$-analogues of the following two congruences of Z.-W. Sun: \[ \sum \_\{k=0\}^\{(p^\{r\}-1)/2\}\frac\{1\}\{8^k\}\{2k\atopwithdelims ()k\} \equiv \Bigl (\frac\{2\}\{p^r\}\Bigr )\hspace\{10.0pt\}(\@mod \; p^2)\quad \text\{and\}\quad \sum \_\{k=0\}^\{(p^\{r\}-1)/2\}\frac\{1\}\{16^k\}\{2k\atopwithdelims ()k\}\equiv \Bigl (\frac\{3\}\{p^r\}\Bigr )\hspace\{10.0pt\}(\@mod \; p^2), \] where $p$ is an odd prime, $r$ is a positive integer, and $(\frac\{m\}\{n\})$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.},
author = {Gu, Cheng-Yang, Guo, Victor J. W.},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin’s involution},
language = {eng},
number = {3},
pages = {757-765},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$q$-analogues of two supercongruences of Z.-W. Sun},
url = {http://eudml.org/doc/297125},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Gu, Cheng-Yang
AU - Guo, Victor J. W.
TI - $q$-analogues of two supercongruences of Z.-W. Sun
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 757
EP - 765
AB - We give several different $q$-analogues of the following two congruences of Z.-W. Sun: \[ \sum _{k=0}^{(p^{r}-1)/2}\frac{1}{8^k}{2k\atopwithdelims ()k} \equiv \Bigl (\frac{2}{p^r}\Bigr )\hspace{10.0pt}(\@mod \; p^2)\quad \text{and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac{1}{16^k}{2k\atopwithdelims ()k}\equiv \Bigl (\frac{3}{p^r}\Bigr )\hspace{10.0pt}(\@mod \; p^2), \] where $p$ is an odd prime, $r$ is a positive integer, and $(\frac{m}{n})$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
LA - eng
KW - congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin’s involution
UR - http://eudml.org/doc/297125
ER -

References

top
  1. Andrews, G. E., 10.1017/CBO9780511608650, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998). (1998) Zbl0996.11002MR1634067DOI10.1017/CBO9780511608650
  2. Berkovich, A., Garvan, F. G., 10.1006/jcta.2002.3281, J. Comb. Theory, Ser. A 100 (2002), 61-93. (2002) Zbl1016.05003MR1932070DOI10.1006/jcta.2002.3281
  3. Cigler, J., A new class of q -Fibonacci polynomials, Electron. J. Comb. 10 (2003), Research paper R19, 15 pages. (2003) Zbl1027.05006MR1975769
  4. Ekhad, S. B., Zeilberger, D., The number of solutions of X 2 = 0 in triangular matrices over G F ( q ) , Electron. J. Comb. 3 (1996), Research paper R2, 2 pages. (1996) Zbl0851.15010MR1364064
  5. Guo, V. J. W., 10.1007/s00025-019-1056-1, Result. Math. 74 (2019), Article No. 131, 15 pages. (2019) Zbl1414.33016MR3963751DOI10.1007/s00025-019-1056-1
  6. Guo, V. J. W., Liu, J.-C., 10.1080/10236198.2018.1485669, J. Difference Equ. Appl. 24 (2018), 1368-1373. (2018) Zbl06949015MR3851167DOI10.1080/10236198.2018.1485669
  7. Guo, V. J. W., Wang, S.-D., 10.11650/tjm/180601, Taiwanese J. Math. 23 (2019), 11-27. (2019) Zbl1405.05017MR3909988DOI10.11650/tjm/180601
  8. Guo, V. J. W., Zeng, J., 10.1142/S1793042112501138, Int. J. Number Theory 8 (2012), 2003-2016. (2012) Zbl1268.11028MR2978852DOI10.1142/S1793042112501138
  9. Guo, V. J. W., Zudilin, W., 10.1016/j.aim.2019.02.008, Adv. Math. 346 (2019), 329-358. (2019) Zbl07035902MR3910798DOI10.1016/j.aim.2019.02.008
  10. Ismail, M. E. H., Kim, D., Stanton, D., 10.1007/s003659900097, Constructive Approximation 15 (1999), 69-81. (1999) Zbl0924.42004MR1660081DOI10.1007/s003659900097
  11. Liu, J.-C., 10.21136/CMJ.2017.0063-16, Czech. Math. J. 67 (2017), 525-531. (2017) Zbl06738535MR3661057DOI10.21136/CMJ.2017.0063-16
  12. Liu, J.-C., 10.1216/RMJ-2017-47-8-2723, Rocky Mt. J. Math. 47 (2017), 2723-2730. (2017) Zbl06840997MR3760315DOI10.1216/RMJ-2017-47-8-2723
  13. Slater, L. J., 10.1112/plms/s2-53.6.460, Proc. Lond. Math. Soc., II. Ser. 53 (1951), 460-475. (1951) Zbl0044.06102MR0043235DOI10.1112/plms/s2-53.6.460
  14. Sun, Z.-W., 10.11650/tjm.17.2013.2488, Taiwanese J. Math. 17 (2013), 1523-1543. (2013) Zbl1316.11013MR3106028DOI10.11650/tjm.17.2013.2488

NotesEmbed ?

top

You must be logged in to post comments.