q -analogues of two supercongruences of Z.-W. Sun

Cheng-Yang Gu; Victor J. W. Guo

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 757-765
  • ISSN: 0011-4642

Abstract

top
We give several different q -analogues of the following two congruences of Z.-W. Sun: k = 0 ( p r - 1 ) / 2 1 8 k 2 k k 2 p r ( mod p 2 ) and k = 0 ( p r - 1 ) / 2 1 16 k 2 k k 3 p r ( mod p 2 ) , where p is an odd prime, r is a positive integer, and ( m n ) is the Jacobi symbol. The proofs of them require the use of some curious q -series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.

How to cite

top

Gu, Cheng-Yang, and Guo, Victor J. W.. "$q$-analogues of two supercongruences of Z.-W. Sun." Czechoslovak Mathematical Journal 70.3 (2020): 757-765. <http://eudml.org/doc/297125>.

@article{Gu2020,
abstract = {We give several different $q$-analogues of the following two congruences of Z.-W. Sun: \[ \sum \_\{k=0\}^\{(p^\{r\}-1)/2\}\frac\{1\}\{8^k\}\{2k\atopwithdelims ()k\} \equiv \Bigl (\frac\{2\}\{p^r\}\Bigr )\hspace\{10.0pt\}(\@mod \; p^2)\quad \text\{and\}\quad \sum \_\{k=0\}^\{(p^\{r\}-1)/2\}\frac\{1\}\{16^k\}\{2k\atopwithdelims ()k\}\equiv \Bigl (\frac\{3\}\{p^r\}\Bigr )\hspace\{10.0pt\}(\@mod \; p^2), \] where $p$ is an odd prime, $r$ is a positive integer, and $(\frac\{m\}\{n\})$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.},
author = {Gu, Cheng-Yang, Guo, Victor J. W.},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin’s involution},
language = {eng},
number = {3},
pages = {757-765},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$q$-analogues of two supercongruences of Z.-W. Sun},
url = {http://eudml.org/doc/297125},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Gu, Cheng-Yang
AU - Guo, Victor J. W.
TI - $q$-analogues of two supercongruences of Z.-W. Sun
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 757
EP - 765
AB - We give several different $q$-analogues of the following two congruences of Z.-W. Sun: \[ \sum _{k=0}^{(p^{r}-1)/2}\frac{1}{8^k}{2k\atopwithdelims ()k} \equiv \Bigl (\frac{2}{p^r}\Bigr )\hspace{10.0pt}(\@mod \; p^2)\quad \text{and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac{1}{16^k}{2k\atopwithdelims ()k}\equiv \Bigl (\frac{3}{p^r}\Bigr )\hspace{10.0pt}(\@mod \; p^2), \] where $p$ is an odd prime, $r$ is a positive integer, and $(\frac{m}{n})$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin’s involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
LA - eng
KW - congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin’s involution
UR - http://eudml.org/doc/297125
ER -

References

top
  1. Andrews, G. E., 10.1017/CBO9780511608650, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998). (1998) Zbl0996.11002MR1634067DOI10.1017/CBO9780511608650
  2. Berkovich, A., Garvan, F. G., 10.1006/jcta.2002.3281, J. Comb. Theory, Ser. A 100 (2002), 61-93. (2002) Zbl1016.05003MR1932070DOI10.1006/jcta.2002.3281
  3. Cigler, J., A new class of q -Fibonacci polynomials, Electron. J. Comb. 10 (2003), Research paper R19, 15 pages. (2003) Zbl1027.05006MR1975769
  4. Ekhad, S. B., Zeilberger, D., The number of solutions of X 2 = 0 in triangular matrices over G F ( q ) , Electron. J. Comb. 3 (1996), Research paper R2, 2 pages. (1996) Zbl0851.15010MR1364064
  5. Guo, V. J. W., 10.1007/s00025-019-1056-1, Result. Math. 74 (2019), Article No. 131, 15 pages. (2019) Zbl1414.33016MR3963751DOI10.1007/s00025-019-1056-1
  6. Guo, V. J. W., Liu, J.-C., 10.1080/10236198.2018.1485669, J. Difference Equ. Appl. 24 (2018), 1368-1373. (2018) Zbl06949015MR3851167DOI10.1080/10236198.2018.1485669
  7. Guo, V. J. W., Wang, S.-D., 10.11650/tjm/180601, Taiwanese J. Math. 23 (2019), 11-27. (2019) Zbl1405.05017MR3909988DOI10.11650/tjm/180601
  8. Guo, V. J. W., Zeng, J., 10.1142/S1793042112501138, Int. J. Number Theory 8 (2012), 2003-2016. (2012) Zbl1268.11028MR2978852DOI10.1142/S1793042112501138
  9. Guo, V. J. W., Zudilin, W., 10.1016/j.aim.2019.02.008, Adv. Math. 346 (2019), 329-358. (2019) Zbl07035902MR3910798DOI10.1016/j.aim.2019.02.008
  10. Ismail, M. E. H., Kim, D., Stanton, D., 10.1007/s003659900097, Constructive Approximation 15 (1999), 69-81. (1999) Zbl0924.42004MR1660081DOI10.1007/s003659900097
  11. Liu, J.-C., 10.21136/CMJ.2017.0063-16, Czech. Math. J. 67 (2017), 525-531. (2017) Zbl06738535MR3661057DOI10.21136/CMJ.2017.0063-16
  12. Liu, J.-C., 10.1216/RMJ-2017-47-8-2723, Rocky Mt. J. Math. 47 (2017), 2723-2730. (2017) Zbl06840997MR3760315DOI10.1216/RMJ-2017-47-8-2723
  13. Slater, L. J., 10.1112/plms/s2-53.6.460, Proc. Lond. Math. Soc., II. Ser. 53 (1951), 460-475. (1951) Zbl0044.06102MR0043235DOI10.1112/plms/s2-53.6.460
  14. Sun, Z.-W., 10.11650/tjm.17.2013.2488, Taiwanese J. Math. 17 (2013), 1523-1543. (2013) Zbl1316.11013MR3106028DOI10.11650/tjm.17.2013.2488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.