Truncations of Gauss' square exponent theorem

Ji-Cai Liu; Shan-Shan Zhao

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1183-1189
  • ISSN: 0011-4642

Abstract

top
We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer n , k = 0 n ( - 1 ) k 2 n - k k ( q ; q 2 ) n - k q k + 1 2 = k = - n n ( - 1 ) k q k 2 , where n m = k = 1 m 1 - q n - k + 1 1 - q k and ( a ; q ) n = k = 0 n - 1 ( 1 - a q k ) .

How to cite

top

Liu, Ji-Cai, and Zhao, Shan-Shan. "Truncations of Gauss' square exponent theorem." Czechoslovak Mathematical Journal 72.4 (2022): 1183-1189. <http://eudml.org/doc/298941>.

@article{Liu2022,
abstract = {We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer $n$, \[ \sum \_\{k=0\}^n(-1)^k \left[ \begin\{matrix\} 2n-k\\ k \end\{matrix\} \right] (q;q^2)\_\{n-k\}q^\{\{k+1\atopwithdelims ()2\}\} =\sum \_\{k=-n\}^n(-1)^kq^\{k^2\}, \] where \[ \left[ \begin\{matrix\} n\\ m\end\{matrix\} \right] =\prod \_\{k=1\}^m\frac\{1-q^\{n-k+1\}\}\{1-q^k\} \quad \text\{and\} \quad (a;q)\_n=\prod \_\{k=0\}^\{n-1\}(1-aq^k). \]},
author = {Liu, Ji-Cai, Zhao, Shan-Shan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gauss’ identity; $q$-binomial coefficient; $q$-binomial theorem},
language = {eng},
number = {4},
pages = {1183-1189},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Truncations of Gauss' square exponent theorem},
url = {http://eudml.org/doc/298941},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Liu, Ji-Cai
AU - Zhao, Shan-Shan
TI - Truncations of Gauss' square exponent theorem
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1183
EP - 1189
AB - We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer $n$, \[ \sum _{k=0}^n(-1)^k \left[ \begin{matrix} 2n-k\\ k \end{matrix} \right] (q;q^2)_{n-k}q^{{k+1\atopwithdelims ()2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, \] where \[ \left[ \begin{matrix} n\\ m\end{matrix} \right] =\prod _{k=1}^m\frac{1-q^{n-k+1}}{1-q^k} \quad \text{and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). \]
LA - eng
KW - Gauss’ identity; $q$-binomial coefficient; $q$-binomial theorem
UR - http://eudml.org/doc/298941
ER -

References

top
  1. Andrews, G. E., 10.1017/CBO9780511608650, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). (1998) Zbl0996.11002MR1634067DOI10.1017/CBO9780511608650
  2. Andrews, G. E., Merca, M., 10.1016/j.jcta.2012.05.001, J. Comb. Theory, Ser. A 119 (2012), 1639-1643. (2012) Zbl1246.05014MR2946378DOI10.1016/j.jcta.2012.05.001
  3. Berkovich, A., Garvan, F. G., 10.1006/jcta.2002.3281, J. Comb. Theory, Ser. A 100 (2002), 61-93. (2002) Zbl1016.05003MR1932070DOI10.1006/jcta.2002.3281
  4. Chern, S., 10.1216/RMJ-2018-48-7-2211, Rocky Mt. J. Math. 48 (2018), 2211-2222. (2018) Zbl1454.11044MR3892131DOI10.1216/RMJ-2018-48-7-2211
  5. Chu, W., Claudio, L. Di, Classical Partition Identities and Basic Hypergeometric Series, Quadermi di Matematica 6. Universita degli Studi di Lecce, Lecce (2004). (2004) Zbl1275.11133
  6. Gu, C.-Y., Guo, V. J. W., 10.21136/CMJ.2020.0516-18, Czech. Math. J. 70 (2020), 757-765. (2020) Zbl07250687MR4151703DOI10.21136/CMJ.2020.0516-18
  7. Guo, V. J. W., Zeng, J., 10.1016/j.disc.2007.07.106, Discrete Math. 308 (2008), 4069-4078. (2008) Zbl1156.05003MR2427740DOI10.1016/j.disc.2007.07.106
  8. Guo, V. J. W., Zeng, J., 10.1016/j.jcta.2012.12.004, J. Comb. Theory, Ser. A 120 (2013), 700-707. (2013) Zbl1259.05020MR3007145DOI10.1016/j.jcta.2012.12.004
  9. Ismail, M. E. H., Kim, D., Stanton, D., 10.1007/s003659900097, Constr. Approx. 15 (1999), 69-81. (1999) Zbl0924.42004MR1660081DOI10.1007/s003659900097
  10. Liu, J.-C., 10.21136/CMJ.2017.0063-16, Czech. Math. J. 67 (2017), 525-531. (2017) Zbl1458.05025MR3661057DOI10.21136/CMJ.2017.0063-16
  11. Liu, J.-C., 10.1216/RMJ-2017-47-8-2723, Rocky Mt. J. Math. 47 (2017), 2723-2730. (2017) Zbl1434.11055MR3760315DOI10.1216/RMJ-2017-47-8-2723
  12. Liu, J.-C., Huang, Z.-Y., 10.1017/S0004972720000301, Bull. Aust. Math. Soc. 102 (2020), 353-359. (2020) Zbl1453.05013MR4176678DOI10.1017/S0004972720000301
  13. Mao, R., 10.1016/j.jcta.2014.10.004, J. Comb. Theory, Ser. A 130 (2015), 15-25. (2015) Zbl1316.11092MR3280682DOI10.1016/j.jcta.2014.10.004
  14. Shanks, D., 10.1090/S0002-9939-1951-0043808-6, Proc. Am. Math. Soc. 2 (1951), 747-749. (1951) Zbl0044.28403MR0043808DOI10.1090/S0002-9939-1951-0043808-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.