Truncations of Gauss' square exponent theorem
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1183-1189
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Ji-Cai, and Zhao, Shan-Shan. "Truncations of Gauss' square exponent theorem." Czechoslovak Mathematical Journal 72.4 (2022): 1183-1189. <http://eudml.org/doc/298941>.
@article{Liu2022,
abstract = {We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer $n$, \[ \sum \_\{k=0\}^n(-1)^k \left[ \begin\{matrix\} 2n-k\\ k \end\{matrix\} \right] (q;q^2)\_\{n-k\}q^\{\{k+1\atopwithdelims ()2\}\} =\sum \_\{k=-n\}^n(-1)^kq^\{k^2\}, \]
where \[ \left[ \begin\{matrix\} n\\ m\end\{matrix\} \right] =\prod \_\{k=1\}^m\frac\{1-q^\{n-k+1\}\}\{1-q^k\} \quad \text\{and\} \quad (a;q)\_n=\prod \_\{k=0\}^\{n-1\}(1-aq^k). \]},
author = {Liu, Ji-Cai, Zhao, Shan-Shan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gauss’ identity; $q$-binomial coefficient; $q$-binomial theorem},
language = {eng},
number = {4},
pages = {1183-1189},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Truncations of Gauss' square exponent theorem},
url = {http://eudml.org/doc/298941},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Liu, Ji-Cai
AU - Zhao, Shan-Shan
TI - Truncations of Gauss' square exponent theorem
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1183
EP - 1189
AB - We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer $n$, \[ \sum _{k=0}^n(-1)^k \left[ \begin{matrix} 2n-k\\ k \end{matrix} \right] (q;q^2)_{n-k}q^{{k+1\atopwithdelims ()2}} =\sum _{k=-n}^n(-1)^kq^{k^2}, \]
where \[ \left[ \begin{matrix} n\\ m\end{matrix} \right] =\prod _{k=1}^m\frac{1-q^{n-k+1}}{1-q^k} \quad \text{and} \quad (a;q)_n=\prod _{k=0}^{n-1}(1-aq^k). \]
LA - eng
KW - Gauss’ identity; $q$-binomial coefficient; $q$-binomial theorem
UR - http://eudml.org/doc/298941
ER -
References
top- Andrews, G. E., 10.1017/CBO9780511608650, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1998). (1998) Zbl0996.11002MR1634067DOI10.1017/CBO9780511608650
- Andrews, G. E., Merca, M., 10.1016/j.jcta.2012.05.001, J. Comb. Theory, Ser. A 119 (2012), 1639-1643. (2012) Zbl1246.05014MR2946378DOI10.1016/j.jcta.2012.05.001
- Berkovich, A., Garvan, F. G., 10.1006/jcta.2002.3281, J. Comb. Theory, Ser. A 100 (2002), 61-93. (2002) Zbl1016.05003MR1932070DOI10.1006/jcta.2002.3281
- Chern, S., 10.1216/RMJ-2018-48-7-2211, Rocky Mt. J. Math. 48 (2018), 2211-2222. (2018) Zbl1454.11044MR3892131DOI10.1216/RMJ-2018-48-7-2211
- Chu, W., Claudio, L. Di, Classical Partition Identities and Basic Hypergeometric Series, Quadermi di Matematica 6. Universita degli Studi di Lecce, Lecce (2004). (2004) Zbl1275.11133
- Gu, C.-Y., Guo, V. J. W., 10.21136/CMJ.2020.0516-18, Czech. Math. J. 70 (2020), 757-765. (2020) Zbl07250687MR4151703DOI10.21136/CMJ.2020.0516-18
- Guo, V. J. W., Zeng, J., 10.1016/j.disc.2007.07.106, Discrete Math. 308 (2008), 4069-4078. (2008) Zbl1156.05003MR2427740DOI10.1016/j.disc.2007.07.106
- Guo, V. J. W., Zeng, J., 10.1016/j.jcta.2012.12.004, J. Comb. Theory, Ser. A 120 (2013), 700-707. (2013) Zbl1259.05020MR3007145DOI10.1016/j.jcta.2012.12.004
- Ismail, M. E. H., Kim, D., Stanton, D., 10.1007/s003659900097, Constr. Approx. 15 (1999), 69-81. (1999) Zbl0924.42004MR1660081DOI10.1007/s003659900097
- Liu, J.-C., 10.21136/CMJ.2017.0063-16, Czech. Math. J. 67 (2017), 525-531. (2017) Zbl1458.05025MR3661057DOI10.21136/CMJ.2017.0063-16
- Liu, J.-C., 10.1216/RMJ-2017-47-8-2723, Rocky Mt. J. Math. 47 (2017), 2723-2730. (2017) Zbl1434.11055MR3760315DOI10.1216/RMJ-2017-47-8-2723
- Liu, J.-C., Huang, Z.-Y., 10.1017/S0004972720000301, Bull. Aust. Math. Soc. 102 (2020), 353-359. (2020) Zbl1453.05013MR4176678DOI10.1017/S0004972720000301
- Mao, R., 10.1016/j.jcta.2014.10.004, J. Comb. Theory, Ser. A 130 (2015), 15-25. (2015) Zbl1316.11092MR3280682DOI10.1016/j.jcta.2014.10.004
- Shanks, D., 10.1090/S0002-9939-1951-0043808-6, Proc. Am. Math. Soc. 2 (1951), 747-749. (1951) Zbl0044.28403MR0043808DOI10.1090/S0002-9939-1951-0043808-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.