The fan graph is determined by its signless Laplacian spectrum

Muhuo Liu; Yuan Yuan; Kinkar Chandra Das

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 21-31
  • ISSN: 0011-4642

Abstract

top
Given a graph G , if there is no nonisomorphic graph H such that G and H have the same signless Laplacian spectra, then we say that G is Q -DS. In this paper we show that every fan graph F n is Q -DS, where F n = K 1 P n - 1 and n 3 .

How to cite

top

Liu, Muhuo, Yuan, Yuan, and Chandra Das, Kinkar. "The fan graph is determined by its signless Laplacian spectrum." Czechoslovak Mathematical Journal 70.1 (2020): 21-31. <http://eudml.org/doc/297127>.

@article{Liu2020,
abstract = {Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is $Q$-DS. In this paper we show that every fan graph $F_n$ is $Q$-DS, where $F_\{n\}=K_\{1\}\vee P_\{n-1\}$ and $n\ge 3$.},
author = {Liu, Muhuo, Yuan, Yuan, Chandra Das, Kinkar},
journal = {Czechoslovak Mathematical Journal},
keywords = {signless Laplacian spectrum; join graph; graph determined by its spectrum},
language = {eng},
number = {1},
pages = {21-31},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fan graph is determined by its signless Laplacian spectrum},
url = {http://eudml.org/doc/297127},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Liu, Muhuo
AU - Yuan, Yuan
AU - Chandra Das, Kinkar
TI - The fan graph is determined by its signless Laplacian spectrum
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 21
EP - 31
AB - Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is $Q$-DS. In this paper we show that every fan graph $F_n$ is $Q$-DS, where $F_{n}=K_{1}\vee P_{n-1}$ and $n\ge 3$.
LA - eng
KW - signless Laplacian spectrum; join graph; graph determined by its spectrum
UR - http://eudml.org/doc/297127
ER -

References

top
  1. Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A., 10.1016/S0167-5060(08)70277-2, Annals of Discrete Mathematics 36, North-Holland, Amsterdam (1988). (1988) Zbl0634.05054MR0926481DOI10.1016/S0167-5060(08)70277-2
  2. Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) Zbl1113.05061MR2312332DOI10.1016/j.laa.2007.01.009
  3. Das, K. Ch., 10.1016/j.camwa.2004.05.005, Comput. Math. Appl. 48 (2004), 715-724. (2004) Zbl1058.05048MR2105246DOI10.1016/j.camwa.2004.05.005
  4. Das, K. Ch., 10.1016/j.laa.2010.01.005, Linear Algebra Appl. 432 (2010), 3018-3029. (2010) Zbl1195.05040MR2639266DOI10.1016/j.laa.2010.01.005
  5. Das, K. Ch., Liu, M., 10.1016/j.dam.2016.01.003, Discrete Appl. Math. 205 (2016), 45-51. (2016) Zbl1333.05180MR3478617DOI10.1016/j.dam.2016.01.003
  6. Freitas, M. A. A. de, Abreu, N. M. M. de, Del-Vecchio, R. R., Jurkiewicz, S., 10.1016/j.laa.2009.06.029, Linear Algebra Appl. 432 (2010), 2352-2360. (2010) Zbl1219.05158MR2599865DOI10.1016/j.laa.2009.06.029
  7. Haemers, W. H., 10.1016/0024-3795(95)00199-2, Linear Algebra Appl. 226-228 (1995), 593-616. (1995) Zbl0831.05044MR1344588DOI10.1016/0024-3795(95)00199-2
  8. Liu, M., 10.1007/s10587-012-0067-9, Czech. Math. J. 62 (2012), 1117-1134. (2012) Zbl1274.05299MR3010260DOI10.1007/s10587-012-0067-9
  9. Liu, M., Liu, B., Extremal Theory of Graph Spectrum, Mathematical Chemistry Monographs 22, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2018). (2018) 
  10. Liu, X., Zhang, Y., Gui, X., 10.1016/j.disc.2007.08.002, Discrete Math. 308 (2008), 4267-4271. (2008) Zbl1225.05172MR2427757DOI10.1016/j.disc.2007.08.002
  11. Dam, E. R. van, Haemers, W. H., 10.1016/S0024-3795(03)00483-X, Linear Algebra Appl. 373 (2003), 241-272. (2003) Zbl1026.05079MR2022290DOI10.1016/S0024-3795(03)00483-X
  12. Wang, J., Zhao, H., Huang, Q., 10.1007/s10587-012-0021-x, Czech. Math. J. 62 (2012), 117-126. (2012) Zbl1249.05256MR2899739DOI10.1007/s10587-012-0021-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.