The fan graph is determined by its signless Laplacian spectrum
Muhuo Liu; Yuan Yuan; Kinkar Chandra Das
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 21-31
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Muhuo, Yuan, Yuan, and Chandra Das, Kinkar. "The fan graph is determined by its signless Laplacian spectrum." Czechoslovak Mathematical Journal 70.1 (2020): 21-31. <http://eudml.org/doc/297127>.
@article{Liu2020,
abstract = {Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is $Q$-DS. In this paper we show that every fan graph $F_n$ is $Q$-DS, where $F_\{n\}=K_\{1\}\vee P_\{n-1\}$ and $n\ge 3$.},
author = {Liu, Muhuo, Yuan, Yuan, Chandra Das, Kinkar},
journal = {Czechoslovak Mathematical Journal},
keywords = {signless Laplacian spectrum; join graph; graph determined by its spectrum},
language = {eng},
number = {1},
pages = {21-31},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fan graph is determined by its signless Laplacian spectrum},
url = {http://eudml.org/doc/297127},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Liu, Muhuo
AU - Yuan, Yuan
AU - Chandra Das, Kinkar
TI - The fan graph is determined by its signless Laplacian spectrum
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 21
EP - 31
AB - Given a graph $G$, if there is no nonisomorphic graph $H$ such that $G$ and $H$ have the same signless Laplacian spectra, then we say that $G$ is $Q$-DS. In this paper we show that every fan graph $F_n$ is $Q$-DS, where $F_{n}=K_{1}\vee P_{n-1}$ and $n\ge 3$.
LA - eng
KW - signless Laplacian spectrum; join graph; graph determined by its spectrum
UR - http://eudml.org/doc/297127
ER -
References
top- Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A., 10.1016/S0167-5060(08)70277-2, Annals of Discrete Mathematics 36, North-Holland, Amsterdam (1988). (1988) Zbl0634.05054MR0926481DOI10.1016/S0167-5060(08)70277-2
- Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) Zbl1113.05061MR2312332DOI10.1016/j.laa.2007.01.009
- Das, K. Ch., 10.1016/j.camwa.2004.05.005, Comput. Math. Appl. 48 (2004), 715-724. (2004) Zbl1058.05048MR2105246DOI10.1016/j.camwa.2004.05.005
- Das, K. Ch., 10.1016/j.laa.2010.01.005, Linear Algebra Appl. 432 (2010), 3018-3029. (2010) Zbl1195.05040MR2639266DOI10.1016/j.laa.2010.01.005
- Das, K. Ch., Liu, M., 10.1016/j.dam.2016.01.003, Discrete Appl. Math. 205 (2016), 45-51. (2016) Zbl1333.05180MR3478617DOI10.1016/j.dam.2016.01.003
- Freitas, M. A. A. de, Abreu, N. M. M. de, Del-Vecchio, R. R., Jurkiewicz, S., 10.1016/j.laa.2009.06.029, Linear Algebra Appl. 432 (2010), 2352-2360. (2010) Zbl1219.05158MR2599865DOI10.1016/j.laa.2009.06.029
- Haemers, W. H., 10.1016/0024-3795(95)00199-2, Linear Algebra Appl. 226-228 (1995), 593-616. (1995) Zbl0831.05044MR1344588DOI10.1016/0024-3795(95)00199-2
- Liu, M., 10.1007/s10587-012-0067-9, Czech. Math. J. 62 (2012), 1117-1134. (2012) Zbl1274.05299MR3010260DOI10.1007/s10587-012-0067-9
- Liu, M., Liu, B., Extremal Theory of Graph Spectrum, Mathematical Chemistry Monographs 22, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac (2018). (2018)
- Liu, X., Zhang, Y., Gui, X., 10.1016/j.disc.2007.08.002, Discrete Math. 308 (2008), 4267-4271. (2008) Zbl1225.05172MR2427757DOI10.1016/j.disc.2007.08.002
- Dam, E. R. van, Haemers, W. H., 10.1016/S0024-3795(03)00483-X, Linear Algebra Appl. 373 (2003), 241-272. (2003) Zbl1026.05079MR2022290DOI10.1016/S0024-3795(03)00483-X
- Wang, J., Zhao, H., Huang, Q., 10.1007/s10587-012-0021-x, Czech. Math. J. 62 (2012), 117-126. (2012) Zbl1249.05256MR2899739DOI10.1007/s10587-012-0021-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.