Asymptotic properties of a -Laplacian and Rayleigh quotient
Waldo Arriagada; Jorge Huentutripay
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 3, page 345-362
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArriagada, Waldo, and Huentutripay, Jorge. "Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 345-362. <http://eudml.org/doc/297143>.
@article{Arriagada2020,
abstract = {In this paper we consider the $\varphi \,$-Laplacian problem with Dirichlet boundary condition, \[ -\{\rm div\}\Big (\varphi (|\nabla u|) \frac\{\nabla u\}\{|\nabla u |\}\Big )=\lambda g(\cdot ) \varphi (u) \qquad \text\{in \} \Omega , \lambda \in \{\mathbb \{R\}\} \text\{ and \} u\vert \_\{\partial \Omega \}=0. \]
The term $\varphi $ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^\{\infty \}(\Omega )$ and $\Omega \subseteq \mathbb \{R\}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi $-Laplacian. It turns out that if, in addition, a suitable $\Delta _2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.},
author = {Arriagada, Waldo, Huentutripay, Jorge},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz–Sobolev space; $\varphi $-Laplacian; eigenvalue; Rayleigh quotient},
language = {eng},
number = {3},
pages = {345-362},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient},
url = {http://eudml.org/doc/297143},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Arriagada, Waldo
AU - Huentutripay, Jorge
TI - Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 345
EP - 362
AB - In this paper we consider the $\varphi \,$-Laplacian problem with Dirichlet boundary condition, \[ -{\rm div}\Big (\varphi (|\nabla u|) \frac{\nabla u}{|\nabla u |}\Big )=\lambda g(\cdot ) \varphi (u) \qquad \text{in } \Omega , \lambda \in {\mathbb {R}} \text{ and } u\vert _{\partial \Omega }=0. \]
The term $\varphi $ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^{\infty }(\Omega )$ and $\Omega \subseteq \mathbb {R}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi $-Laplacian. It turns out that if, in addition, a suitable $\Delta _2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.
LA - eng
KW - Orlicz–Sobolev space; $\varphi $-Laplacian; eigenvalue; Rayleigh quotient
UR - http://eudml.org/doc/297143
ER -
References
top- Adams R. A., Fournier J. J. F., Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, Elsevier Academic Press, Amsterdam, 2003. Zbl1098.46001MR2424078
- Arriagada W., Huentutripay J., Blow-up rates of large solutions for a -Laplacian problem with gradient term, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 669–689. MR3233749
- Arriagada W., Huentutripay J., Characterization of a homogeneous Orlicz space, Electron. J. Differential Equations 2017 (2017), Paper No. 49, 17 pages. MR3625929
- Arriagada W., Huentutripay J., Regularity, positivity and asymptotic vanishing of solutions of a -Laplacian, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 59–72. MR3747154
- Brezis H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (French). MR0697382
- Diaz G., Letelier R., 10.1080/00036819308840157, Appl. Anal. 48 (1993), no. 1–4, 173–203. MR1278131DOI10.1080/00036819308840157
- Donaldson T. K., Trudinger N. S., 10.1016/0022-1236(71)90018-8, J. Functional Analysis 8 (1971), 52–75. MR0301500DOI10.1016/0022-1236(71)90018-8
- Drábek P., Manásevich R., On the closed solution to some nonhomogeneous eigenvalue problems with -Laplacian, Differential Integral Equations 12 (1999), no. 6, 773–788. MR1728030
- Drábek P., Robinson S. B., 10.1006/jfan.1999.3501, J. Funct. Anal. 169 (1999), no. 1, 189–200. MR1726752DOI10.1006/jfan.1999.3501
- Drábek P., Rother W., 10.1002/mana.19951730109, Mathematische Nachrichten 173 (1995), no. 1, 131–139. MR1336957DOI10.1002/mana.19951730109
- Fan X., Zhang Q., Zhao D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR2107835DOI10.1016/j.jmaa.2003.11.020
- Fukagai N., Ito M., Narukawa K., 10.1619/fesi.49.235, Funkcial. Ekvac. 49 (2006), no. 2, 235–267. MR2271234DOI10.1619/fesi.49.235
- Garcia Azorero J. P., Peral Alonso I., Existence and nonuniqueness for the -Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1403. MR0912211
- García-Huidobro M., Le V. K., Manásevich R., Schmitt K., 10.1007/s000300050073, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207–225. MR1694787DOI10.1007/s000300050073
- Gossez J.-P., 10.1090/S0002-9947-1974-0342854-2, Trans. Amer. Math. Soc. 190 (1974), 163–205. MR0342854DOI10.1090/S0002-9947-1974-0342854-2
- Gossez J.-P., Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978, Teubner, Leipzig, 1979, pages 59–94. MR0578910
- Gossez J.-P., Manásevich R., On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 4, 891–909. MR1926921
- Huentutripay J., Manásevich R., 10.1007/s10884-006-9049-7, J. Dynam. Differential Equations 18 (2006), no. 4, 901–921. MR2263407DOI10.1007/s10884-006-9049-7
- Krasnosel'skiĭ M. A., Rutic'kiĭ Ja. B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- Lang S., Real and Functional Analysis, Graduate Texts in Mathematics, 142, Springer, New York, 1993. Zbl0831.46001MR1216137
- Lê A., Eigenvalue problems for the -Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099. MR2196811
- Lieberman G. M., 10.1080/03605309108820761, Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361. MR1104103DOI10.1080/03605309108820761
- Lindqvist P., 10.1090/S0002-9939-1990-1007505-7, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR1007505DOI10.1090/S0002-9939-1990-1007505-7
- Lindqvist P., 10.1216/rmjm/1181072623, Rocky Mountain J. Math. 23 (1993), no. 1, 281–288. MR1212743DOI10.1216/rmjm/1181072623
- Mihăilescu M., Rădulescu V., 10.1090/S0002-9939-07-08815-6, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. MR2317971DOI10.1090/S0002-9939-07-08815-6
- Mihăilescu M., Rădulescu V., 10.1142/S0219530508001067, Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR2380887DOI10.1142/S0219530508001067
- Mihăilescu M., Rădulescu V., Repovš D., 10.1016/j.matpur.2009.06.004, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148. MR2584738DOI10.1016/j.matpur.2009.06.004
- Mustonen V., Tienari M., An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces, Proc. Roy. Soc. Edinburgh A 129 (1999), no. 1, 153–163. MR1669197
- Pick L., Kufner A., John O., Fučík S., Function Spaces, Vol. 1, De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter, Berlin, 2013. MR3024912
- Rădulescu V. D., Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336–369. MR3348928
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.