Asymptotic properties of a ϕ -Laplacian and Rayleigh quotient

Waldo Arriagada; Jorge Huentutripay

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 3, page 345-362
  • ISSN: 0010-2628

Abstract

top
In this paper we consider the ϕ -Laplacian problem with Dirichlet boundary condition, - div ϕ ( | u | ) u | u | = λ g ( · ) ϕ ( u ) in Ω , λ and u | Ω = 0 . The term ϕ is a real odd and increasing homeomorphism, g is a nonnegative function in L ( Ω ) and Ω N is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the ϕ -Laplacian. It turns out that if, in addition, a suitable Δ 2 -condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.

How to cite

top

Arriagada, Waldo, and Huentutripay, Jorge. "Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient." Commentationes Mathematicae Universitatis Carolinae 61.3 (2020): 345-362. <http://eudml.org/doc/297143>.

@article{Arriagada2020,
abstract = {In this paper we consider the $\varphi \,$-Laplacian problem with Dirichlet boundary condition, \[ -\{\rm div\}\Big (\varphi (|\nabla u|) \frac\{\nabla u\}\{|\nabla u |\}\Big )=\lambda g(\cdot ) \varphi (u) \qquad \text\{in \} \Omega , \lambda \in \{\mathbb \{R\}\} \text\{ and \} u\vert \_\{\partial \Omega \}=0. \] The term $\varphi $ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^\{\infty \}(\Omega )$ and $\Omega \subseteq \mathbb \{R\}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi $-Laplacian. It turns out that if, in addition, a suitable $\Delta _2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.},
author = {Arriagada, Waldo, Huentutripay, Jorge},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz–Sobolev space; $\varphi $-Laplacian; eigenvalue; Rayleigh quotient},
language = {eng},
number = {3},
pages = {345-362},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient},
url = {http://eudml.org/doc/297143},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Arriagada, Waldo
AU - Huentutripay, Jorge
TI - Asymptotic properties of a $\varphi $-Laplacian and Rayleigh quotient
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 3
SP - 345
EP - 362
AB - In this paper we consider the $\varphi \,$-Laplacian problem with Dirichlet boundary condition, \[ -{\rm div}\Big (\varphi (|\nabla u|) \frac{\nabla u}{|\nabla u |}\Big )=\lambda g(\cdot ) \varphi (u) \qquad \text{in } \Omega , \lambda \in {\mathbb {R}} \text{ and } u\vert _{\partial \Omega }=0. \] The term $\varphi $ is a real odd and increasing homeomorphism, $g$ is a nonnegative function in $L^{\infty }(\Omega )$ and $\Omega \subseteq \mathbb {R}^N$ is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer and an eigenfunction of the $\varphi $-Laplacian. It turns out that if, in addition, a suitable $\Delta _2$-condition holds then any number greater than or equal to the minimum of the Rayleigh quotient is an eigenvalue of the differential equation.
LA - eng
KW - Orlicz–Sobolev space; $\varphi $-Laplacian; eigenvalue; Rayleigh quotient
UR - http://eudml.org/doc/297143
ER -

References

top
  1. Adams R. A., Fournier J. J. F., Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, Elsevier Academic Press, Amsterdam, 2003. Zbl1098.46001MR2424078
  2. Arriagada W., Huentutripay J., Blow-up rates of large solutions for a φ -Laplacian problem with gradient term, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 669–689. MR3233749
  3. Arriagada W., Huentutripay J., Characterization of a homogeneous Orlicz space, Electron. J. Differential Equations 2017 (2017), Paper No. 49, 17 pages. MR3625929
  4. Arriagada W., Huentutripay J., Regularity, positivity and asymptotic vanishing of solutions of a φ -Laplacian, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 59–72. MR3747154
  5. Brezis H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (French). MR0697382
  6. Diaz G., Letelier R., 10.1080/00036819308840157, Appl. Anal. 48 (1993), no. 1–4, 173–203. MR1278131DOI10.1080/00036819308840157
  7. Donaldson T. K., Trudinger N. S., 10.1016/0022-1236(71)90018-8, J. Functional Analysis 8 (1971), 52–75. MR0301500DOI10.1016/0022-1236(71)90018-8
  8. Drábek P., Manásevich R., On the closed solution to some nonhomogeneous eigenvalue problems with p -Laplacian, Differential Integral Equations 12 (1999), no. 6, 773–788. MR1728030
  9. Drábek P., Robinson S. B., 10.1006/jfan.1999.3501, J. Funct. Anal. 169 (1999), no. 1, 189–200. MR1726752DOI10.1006/jfan.1999.3501
  10. Drábek P., Rother W., 10.1002/mana.19951730109, Mathematische Nachrichten 173 (1995), no. 1, 131–139. MR1336957DOI10.1002/mana.19951730109
  11. Fan X., Zhang Q., Zhao D., 10.1016/j.jmaa.2003.11.020, J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR2107835DOI10.1016/j.jmaa.2003.11.020
  12. Fukagai N., Ito M., Narukawa K., 10.1619/fesi.49.235, Funkcial. Ekvac. 49 (2006), no. 2, 235–267. MR2271234DOI10.1619/fesi.49.235
  13. Garcia Azorero J. P., Peral Alonso I., Existence and nonuniqueness for the p -Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1403. MR0912211
  14. García-Huidobro M., Le V. K., Manásevich R., Schmitt K., 10.1007/s000300050073, NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207–225. MR1694787DOI10.1007/s000300050073
  15. Gossez J.-P., 10.1090/S0002-9947-1974-0342854-2, Trans. Amer. Math. Soc. 190 (1974), 163–205. MR0342854DOI10.1090/S0002-9947-1974-0342854-2
  16. Gossez J.-P., Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978, Teubner, Leipzig, 1979, pages 59–94. MR0578910
  17. Gossez J.-P., Manásevich R., On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 4, 891–909. MR1926921
  18. Huentutripay J., Manásevich R., 10.1007/s10884-006-9049-7, J. Dynam. Differential Equations 18 (2006), no. 4, 901–921. MR2263407DOI10.1007/s10884-006-9049-7
  19. Krasnosel'skiĭ M. A., Rutic'kiĭ Ja. B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961. 
  20. Lang S., Real and Functional Analysis, Graduate Texts in Mathematics, 142, Springer, New York, 1993. Zbl0831.46001MR1216137
  21. Lê A., Eigenvalue problems for the p -Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099. MR2196811
  22. Lieberman G. M., 10.1080/03605309108820761, Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361. MR1104103DOI10.1080/03605309108820761
  23. Lindqvist P., 10.1090/S0002-9939-1990-1007505-7, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR1007505DOI10.1090/S0002-9939-1990-1007505-7
  24. Lindqvist P., 10.1216/rmjm/1181072623, Rocky Mountain J. Math. 23 (1993), no. 1, 281–288. MR1212743DOI10.1216/rmjm/1181072623
  25. Mihăilescu M., Rădulescu V., 10.1090/S0002-9939-07-08815-6, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937. MR2317971DOI10.1090/S0002-9939-07-08815-6
  26. Mihăilescu M., Rădulescu V., 10.1142/S0219530508001067, Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR2380887DOI10.1142/S0219530508001067
  27. Mihăilescu M., Rădulescu V., Repovš D., 10.1016/j.matpur.2009.06.004, J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148. MR2584738DOI10.1016/j.matpur.2009.06.004
  28. Mustonen V., Tienari M., An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces, Proc. Roy. Soc. Edinburgh A 129 (1999), no. 1, 153–163. MR1669197
  29. Pick L., Kufner A., John O., Fučík S., Function Spaces, Vol. 1, De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter, Berlin, 2013. MR3024912
  30. Rădulescu V. D., Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336–369. MR3348928

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.