Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms

Shyamal K. Hui; Richard S. Lemence; Pradip Mandal

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 1, page 105-117
  • ISSN: 0010-2628

Abstract

top
A submanifold M m of a generalized Sasakian-space-form M ¯ 2 n + 1 ( f 1 , f 2 , f 3 ) is said to be C -totally real submanifold if ξ Γ ( T M ) and φ X Γ ( T M ) for all X Γ ( T M ) . In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.

How to cite

top

Hui, Shyamal K., Lemence, Richard S., and Mandal, Pradip. "Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 105-117. <http://eudml.org/doc/297145>.

@article{Hui2020,
abstract = {A submanifold $M^m$ of a generalized Sasakian-space-form $\overline\{M\}^\{2n+1\}(f_1,f_2,f_3)$ is said to be $C$-totally real submanifold if $\xi \in \Gamma (T^\bot M)$ and $\phi X\in \Gamma (T^\bot M)$ for all $X\in \Gamma (TM)$. In particular, if $m=n$, then $M^n$ is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.},
author = {Hui, Shyamal K., Lemence, Richard S., Mandal, Pradip},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized Sasakian-space-form; Legendrian submanifold},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms},
url = {http://eudml.org/doc/297145},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Hui, Shyamal K.
AU - Lemence, Richard S.
AU - Mandal, Pradip
TI - Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 105
EP - 117
AB - A submanifold $M^m$ of a generalized Sasakian-space-form $\overline{M}^{2n+1}(f_1,f_2,f_3)$ is said to be $C$-totally real submanifold if $\xi \in \Gamma (T^\bot M)$ and $\phi X\in \Gamma (T^\bot M)$ for all $X\in \Gamma (TM)$. In particular, if $m=n$, then $M^n$ is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.
LA - eng
KW - generalized Sasakian-space-form; Legendrian submanifold
UR - http://eudml.org/doc/297145
ER -

References

top
  1. Alegre P., Blair D. E., Carriazo A., 10.1007/BF02772217, Israel J. Math. 141 (2004), 157–183. MR2063031DOI10.1007/BF02772217
  2. Alegre P., Carriazo A., 10.1016/j.difgeo.2008.04.014, Differential Geom. Appl. 26 (2008), no. 6, 656–666. MR2474428DOI10.1016/j.difgeo.2008.04.014
  3. Bejancu A., Schouten–van Kampen and Vrănceanu connections on foliated manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 52 (2006), no. 1, 37–60. MR2282431
  4. Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer, Berlin, 1976. MR0467588
  5. Carriazo A., On generalized Sasakian-space-forms, Proc. of the Ninth International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, (2005), 31–39. MR2136149
  6. Gołab S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249–254. MR0383275
  7. Lu Z., Normal scalar curvature conjecture and its applications, J. Funct. Anal. 261 (2011), no. 5, 1248–1308. MR2807100
  8. Mihai I., 10.1016/j.na.2013.10.009, Nonlinear Anal. 95 (2014), 714–720. MR3130556DOI10.1016/j.na.2013.10.009
  9. Mihai I., 10.2748/tmj/1493172127, Tohoku Math. J. (2) 69 (2017), no. 1, 43–53. MR3640013DOI10.2748/tmj/1493172127
  10. Olszak Z., 10.2298/PIM1308031O, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31–42. MR3137487DOI10.2298/PIM1308031O
  11. Schouten J. A., van Kampen E. R., 10.1007/BF01455718, Math. Ann. 103 (1930), 752–783 (German). MR1512645DOI10.1007/BF01455718
  12. Tanaka, N., 10.4099/math1924.2.131, Japan J. Math. (N.S.) 2 (1976), no. 1, 131–190. MR0589931DOI10.4099/math1924.2.131
  13. Tanno, S., 10.1090/S0002-9947-1989-1000553-9, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379. MR1000553DOI10.1090/S0002-9947-1989-1000553-9
  14. Webster S. M., 10.4310/jdg/1214434345, J. Differential Geometry 13 (1978), no. 1, 25–41. MR0520599DOI10.4310/jdg/1214434345
  15. Wintgen P., Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 21, A993–A995 (French. English summary). MR0540375
  16. Yano K., Kon M., Anti-invariant Submanifolds, Lecture Notes in Pure and Applied Mathematics, 21, Marcel Dekker, New York, 1976. MR0425849
  17. Yano K., Kon M., Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing, Singapore, 1984. MR0794310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.