Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms
Shyamal K. Hui; Richard S. Lemence; Pradip Mandal
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 105-117
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHui, Shyamal K., Lemence, Richard S., and Mandal, Pradip. "Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 105-117. <http://eudml.org/doc/297145>.
@article{Hui2020,
abstract = {A submanifold $M^m$ of a generalized Sasakian-space-form $\overline\{M\}^\{2n+1\}(f_1,f_2,f_3)$ is said to be $C$-totally real submanifold if $\xi \in \Gamma (T^\bot M)$ and $\phi X\in \Gamma (T^\bot M)$ for all $X\in \Gamma (TM)$. In particular, if $m=n$, then $M^n$ is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.},
author = {Hui, Shyamal K., Lemence, Richard S., Mandal, Pradip},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized Sasakian-space-form; Legendrian submanifold},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms},
url = {http://eudml.org/doc/297145},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Hui, Shyamal K.
AU - Lemence, Richard S.
AU - Mandal, Pradip
TI - Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 105
EP - 117
AB - A submanifold $M^m$ of a generalized Sasakian-space-form $\overline{M}^{2n+1}(f_1,f_2,f_3)$ is said to be $C$-totally real submanifold if $\xi \in \Gamma (T^\bot M)$ and $\phi X\in \Gamma (T^\bot M)$ for all $X\in \Gamma (TM)$. In particular, if $m=n$, then $M^n$ is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.
LA - eng
KW - generalized Sasakian-space-form; Legendrian submanifold
UR - http://eudml.org/doc/297145
ER -
References
top- Alegre P., Blair D. E., Carriazo A., 10.1007/BF02772217, Israel J. Math. 141 (2004), 157–183. MR2063031DOI10.1007/BF02772217
- Alegre P., Carriazo A., 10.1016/j.difgeo.2008.04.014, Differential Geom. Appl. 26 (2008), no. 6, 656–666. MR2474428DOI10.1016/j.difgeo.2008.04.014
- Bejancu A., Schouten–van Kampen and Vrănceanu connections on foliated manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 52 (2006), no. 1, 37–60. MR2282431
- Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer, Berlin, 1976. MR0467588
- Carriazo A., On generalized Sasakian-space-forms, Proc. of the Ninth International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, (2005), 31–39. MR2136149
- Gołab S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249–254. MR0383275
- Lu Z., Normal scalar curvature conjecture and its applications, J. Funct. Anal. 261 (2011), no. 5, 1248–1308. MR2807100
- Mihai I., 10.1016/j.na.2013.10.009, Nonlinear Anal. 95 (2014), 714–720. MR3130556DOI10.1016/j.na.2013.10.009
- Mihai I., 10.2748/tmj/1493172127, Tohoku Math. J. (2) 69 (2017), no. 1, 43–53. MR3640013DOI10.2748/tmj/1493172127
- Olszak Z., 10.2298/PIM1308031O, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31–42. MR3137487DOI10.2298/PIM1308031O
- Schouten J. A., van Kampen E. R., 10.1007/BF01455718, Math. Ann. 103 (1930), 752–783 (German). MR1512645DOI10.1007/BF01455718
- Tanaka, N., 10.4099/math1924.2.131, Japan J. Math. (N.S.) 2 (1976), no. 1, 131–190. MR0589931DOI10.4099/math1924.2.131
- Tanno, S., 10.1090/S0002-9947-1989-1000553-9, Trans. Amer. Math. Soc. 314 (1989), no. 1, 349–379. MR1000553DOI10.1090/S0002-9947-1989-1000553-9
- Webster S. M., 10.4310/jdg/1214434345, J. Differential Geometry 13 (1978), no. 1, 25–41. MR0520599DOI10.4310/jdg/1214434345
- Wintgen P., Sur l'inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 21, A993–A995 (French. English summary). MR0540375
- Yano K., Kon M., Anti-invariant Submanifolds, Lecture Notes in Pure and Applied Mathematics, 21, Marcel Dekker, New York, 1976. MR0425849
- Yano K., Kon M., Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing, Singapore, 1984. MR0794310
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.