Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms

Zhiqi Chen; Xueqing Chen; Ming Ding

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 953-958
  • ISSN: 0011-4642

Abstract

top
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.

How to cite

top

Chen, Zhiqi, Chen, Xueqing, and Ding, Ming. "Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms." Czechoslovak Mathematical Journal 70.4 (2020): 953-958. <http://eudml.org/doc/297156>.

@article{Chen2020,
abstract = {Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.},
author = {Chen, Zhiqi, Chen, Xueqing, Ding, Ming},
journal = {Czechoslovak Mathematical Journal},
keywords = {Novikov algebra; fermionic Novikov algebra; invariant bilinear form},
language = {eng},
number = {4},
pages = {953-958},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms},
url = {http://eudml.org/doc/297156},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Chen, Zhiqi
AU - Chen, Xueqing
AU - Ding, Ming
TI - Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 953
EP - 958
AB - Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.
LA - eng
KW - Novikov algebra; fermionic Novikov algebra; invariant bilinear form
UR - http://eudml.org/doc/297156
ER -

References

top
  1. Balinskii, A. A., Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math., Dokl. 32 (1985), 228-231 translated from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. (1985) Zbl0606.58018MR0802121
  2. Burde, D., 10.1007/s002290050037, Manuscr. Math. 95 (1998), 397-411 erratum ibid. 96 1998 393-395. (1998) Zbl0907.17008MR1612015DOI10.1007/s002290050037
  3. Dubrovin, B. A., Novikov, S. P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitham averaging method, Sov. Math., Dokl. 27 (1983), 665-669 translated from Dokl. Akad. Nauk SSSR 270 1983 781-785. (1983) Zbl0553.35011MR0715332
  4. Dubrovin, B. A., Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math., Dokl. 30 (1984), 651-654 translated from Dokl. Akad. Nauk SSSR 279 1984 294-297. (1984) Zbl0591.58012MR0770656
  5. Gel'fand, I. M., Dikii, L. A., 10.1070/RM1975v030n05ABEH001522, Russ. Math. Surv. 30 (1975), 77-113 translated from Usp. Mat. Nauk 30 1975 67-100. (1975) Zbl0334.58007MR0508337DOI10.1070/RM1975v030n05ABEH001522
  6. Gel'fand, I. M., Dikii, L. A., 10.1007/BF01075767, Funct. Anal. Appl. 10 (1976), 16-22 translated from Funkts. Anal. Prilozh. 10 1976 18-25. (1976) Zbl0347.49023MR0467819DOI10.1007/BF01075767
  7. Gel'fand, I. M., Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funkts. Anal. Prilozh. Russian 13 (1979), 13-30. (1979) Zbl0428.58009MR0554407
  8. Guediri, M., 10.1016/j.geomphys.2014.04.007, J. Geom. Phys. 82 (2014), 132-144. (2014) Zbl1361.17003MR3206645DOI10.1016/j.geomphys.2014.04.007
  9. O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983). (1983) Zbl0531.53051MR0719023
  10. Vinberg, E. B., The theory of convex homogeneous cones, Trans. Mosc. Math. Soc. 12 (1963), 340-403 translated from Tr. Mosk. Mat. O. 12 1963 303-358. (1963) Zbl0138.43301MR0158414
  11. Xu, X., 10.1007/BF00750806, Lett. Math. Phys. 33 (1995), 1-6. (1995) Zbl0837.16034MR1315250DOI10.1007/BF00750806
  12. Xu, X., 10.1088/0305-4470/28/6/021, J. Phys. A, Math. Gen. 28 (1995), 1681-1698. (1995) Zbl0852.58043MR1338053DOI10.1088/0305-4470/28/6/021
  13. Xu, X., 10.1006/jabr.1999.8064, J. Algebra 223 (2000), 396-437. (2000) Zbl1012.37048MR1735154DOI10.1006/jabr.1999.8064
  14. Zel'manov, E., On a class of local translation invariant Lie algebras, Sov. Math., Dokl. 35 (1987), 216-218 translated from Dokl. Akad. Nauk SSSR 292 1987 1294-1297. (1987) Zbl0629.17002MR0880610

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.