Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms
Zhiqi Chen; Xueqing Chen; Ming Ding
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 953-958
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Zhiqi, Chen, Xueqing, and Ding, Ming. "Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms." Czechoslovak Mathematical Journal 70.4 (2020): 953-958. <http://eudml.org/doc/297156>.
@article{Chen2020,
abstract = {Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.},
author = {Chen, Zhiqi, Chen, Xueqing, Ding, Ming},
journal = {Czechoslovak Mathematical Journal},
keywords = {Novikov algebra; fermionic Novikov algebra; invariant bilinear form},
language = {eng},
number = {4},
pages = {953-958},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms},
url = {http://eudml.org/doc/297156},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Chen, Zhiqi
AU - Chen, Xueqing
AU - Ding, Ming
TI - Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 953
EP - 958
AB - Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.
LA - eng
KW - Novikov algebra; fermionic Novikov algebra; invariant bilinear form
UR - http://eudml.org/doc/297156
ER -
References
top- Balinskii, A. A., Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math., Dokl. 32 (1985), 228-231 translated from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. (1985) Zbl0606.58018MR0802121
- Burde, D., 10.1007/s002290050037, Manuscr. Math. 95 (1998), 397-411 erratum ibid. 96 1998 393-395. (1998) Zbl0907.17008MR1612015DOI10.1007/s002290050037
- Dubrovin, B. A., Novikov, S. P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitham averaging method, Sov. Math., Dokl. 27 (1983), 665-669 translated from Dokl. Akad. Nauk SSSR 270 1983 781-785. (1983) Zbl0553.35011MR0715332
- Dubrovin, B. A., Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math., Dokl. 30 (1984), 651-654 translated from Dokl. Akad. Nauk SSSR 279 1984 294-297. (1984) Zbl0591.58012MR0770656
- Gel'fand, I. M., Dikii, L. A., 10.1070/RM1975v030n05ABEH001522, Russ. Math. Surv. 30 (1975), 77-113 translated from Usp. Mat. Nauk 30 1975 67-100. (1975) Zbl0334.58007MR0508337DOI10.1070/RM1975v030n05ABEH001522
- Gel'fand, I. M., Dikii, L. A., 10.1007/BF01075767, Funct. Anal. Appl. 10 (1976), 16-22 translated from Funkts. Anal. Prilozh. 10 1976 18-25. (1976) Zbl0347.49023MR0467819DOI10.1007/BF01075767
- Gel'fand, I. M., Dorfman, I. Ya., Hamiltonian operators and algebraic structures related to them, Funkts. Anal. Prilozh. Russian 13 (1979), 13-30. (1979) Zbl0428.58009MR0554407
- Guediri, M., 10.1016/j.geomphys.2014.04.007, J. Geom. Phys. 82 (2014), 132-144. (2014) Zbl1361.17003MR3206645DOI10.1016/j.geomphys.2014.04.007
- O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics 103, Academic Press, New York (1983). (1983) Zbl0531.53051MR0719023
- Vinberg, E. B., The theory of convex homogeneous cones, Trans. Mosc. Math. Soc. 12 (1963), 340-403 translated from Tr. Mosk. Mat. O. 12 1963 303-358. (1963) Zbl0138.43301MR0158414
- Xu, X., 10.1007/BF00750806, Lett. Math. Phys. 33 (1995), 1-6. (1995) Zbl0837.16034MR1315250DOI10.1007/BF00750806
- Xu, X., 10.1088/0305-4470/28/6/021, J. Phys. A, Math. Gen. 28 (1995), 1681-1698. (1995) Zbl0852.58043MR1338053DOI10.1088/0305-4470/28/6/021
- Xu, X., 10.1006/jabr.1999.8064, J. Algebra 223 (2000), 396-437. (2000) Zbl1012.37048MR1735154DOI10.1006/jabr.1999.8064
- Zel'manov, E., On a class of local translation invariant Lie algebras, Sov. Math., Dokl. 35 (1987), 216-218 translated from Dokl. Akad. Nauk SSSR 292 1987 1294-1297. (1987) Zbl0629.17002MR0880610
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.