Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials

Sujoy Majumder; Rajib Mandal

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 3, page 281-304
  • ISSN: 0862-7959

Abstract

top
With the idea of normal family we study the uniqueness of meromorphic functions f and g when f n ( f ( k ) ) m - p and g n ( g ( k ) ) m - p share two values, where p is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).

How to cite

top

Majumder, Sujoy, and Mandal, Rajib. "Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials." Mathematica Bohemica 145.3 (2020): 281-304. <http://eudml.org/doc/297159>.

@article{Majumder2020,
abstract = {With the idea of normal family we study the uniqueness of meromorphic functions $f$ and $g$ when $f^\{n\}(f^\{(k)\})^\{m\}-p$ and $g^\{n\}(g^\{(k)\})^\{m\}-p$ share two values, where $p$ is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).},
author = {Majumder, Sujoy, Mandal, Rajib},
journal = {Mathematica Bohemica},
keywords = {uniqueness; meromorphic function; small function; nonlinear differential polynomial; normal family},
language = {eng},
number = {3},
pages = {281-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials},
url = {http://eudml.org/doc/297159},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Majumder, Sujoy
AU - Mandal, Rajib
TI - Uniqueness of meromorphic functions concerning value sharing of nonlinear differential monomials
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 3
SP - 281
EP - 304
AB - With the idea of normal family we study the uniqueness of meromorphic functions $f$ and $g$ when $f^{n}(f^{(k)})^{m}-p$ and $g^{n}(g^{(k)})^{m}-p$ share two values, where $p$ is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).
LA - eng
KW - uniqueness; meromorphic function; small function; nonlinear differential polynomial; normal family
UR - http://eudml.org/doc/297159
ER -

References

top
  1. Alzahary, T. C., Yi, H. X., 10.1080/02781070410001701074, Complex Variables, Theory Appl. 49 (2004), 1063-1078. (2004) Zbl1067.30055MR2111304DOI10.1080/02781070410001701074
  2. Banerjee, A., 10.1016/j.jmaa.2006.04.078, J. Math. Anal. Appl. 327 (2007), 1273-1283. (2007) Zbl1115.30029MR2280003DOI10.1016/j.jmaa.2006.04.078
  3. Banerjee, A., Majumder, S., 10.1007/s40590-016-0156-0, Bol. Soc. Mat. Mex., III. Ser. 24 (2018), 155-180. (2018) Zbl1390.30036MR3773104DOI10.1007/s40590-016-0156-0
  4. Bergweiler, W., Eremenko, A., 10.4171/RMI/176, Rev. Mat. Iberoam. 11 (1995), 355-373. (1995) Zbl0830.30016MR1344897DOI10.4171/RMI/176
  5. Cao, Y.-H., Zhang, X.-B., 10.1186/1029-242X-2012-100, J. Inequal. Appl. 2012 (2012), Paper No. 100, 10 pages. (2012) Zbl1291.30193MR2946490DOI10.1186/1029-242X-2012-100
  6. Chang, J., Zalcman, L., 10.1016/j.jmaa.2007.05.079, J. Math. Anal. Appl. 338 (2008), 1020-1028. (2008) Zbl1160.30014MR2386477DOI10.1016/j.jmaa.2007.05.079
  7. Chen, H., Fang, M., The value distribution of f n f ' , Sci. China, Ser. A 38 (1995), 789-798. (1995) Zbl0839.30026MR1360682
  8. Dou, J., Qi, X.-G., Yang, L.-Z., Entire functions that share fixed-points, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 355-367. (2011) Zbl1216.30033MR2788409
  9. Fang, M., Hua, X., Entire functions that share one value, J. Nanjing Univ., Math. Biq. 13 (1996), 44-48. (1996) Zbl0899.30022MR1411806
  10. Fang, M., Qiu, H., 10.1006/jmaa.2000.7270, J. Math. Anal. Appl. 268 (2002), 426-439. (2002) Zbl1030.30028MR1896207DOI10.1006/jmaa.2000.7270
  11. Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). (1964) Zbl0115.06203MR0164038
  12. Köhler, L., 10.1080/17476938908814322, Complex Variables, Theory Appl. 11 (1989), 39-48. (1989) Zbl0637.30029MR0998240DOI10.1080/17476938908814322
  13. Lahiri, I., 10.1017/S0027763000027215, Nagoya Math. J. 161 (2001), 193-206. (2001) Zbl0981.30023MR1820218DOI10.1017/S0027763000027215
  14. Lahiri, I., 10.1080/17476930108815411, Complex Variables, Theory Appl. 46 (2001), 241-253. (2001) Zbl1025.30027MR1869738DOI10.1080/17476930108815411
  15. Lahiri, I., Dewan, S., Inequalities arising out of the value distribution of a differential monomial, JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), Paper No. 27, 6 pages. (2003) Zbl1126.30309MR1994240
  16. Lahiri, I., Dewan, S., 10.2996/kmj/1050496651, Kodai Math. J. 26 (2003), 95-100. (2003) Zbl1077.30025MR1966685DOI10.2996/kmj/1050496651
  17. Lahiri, I., Sarkar, A., Nonlinear differential polynomials sharing 1-points with weight two, Chin. J. Contemp. Math. 25 (2004), 325-334. (2004) Zbl1069.30051MR2159311
  18. Lin, W., Yi, H. X., 10.1080/02781070412331298624, Complex Variables, Theory Appl. 49 (2004), 793-806. (2004) Zbl1067.30065MR2097218DOI10.1080/02781070412331298624
  19. Pang, X. C., Normality conditions for differential polynomials, Kexue Tongbao, Sci. Bull. 33 (1988), 1690-1693. (1988) Zbl1382.30060MR0999887
  20. Schiff, J. L., 10.1007/978-1-4612-0907-2, Universitext. Springer, New York (1993). (1993) Zbl0770.30002MR1211641DOI10.1007/978-1-4612-0907-2
  21. Xu, J., Yi, H., Zhang, Z., 10.7153/mia-12-09, Math. Inequal. Appl. 12 (2009), 99-113. (2009) Zbl1169.30314MR2489354DOI10.7153/mia-12-09
  22. Yamanoi, K., 10.1007/BF02392741, Acta Math. 192 (2004), 225-294. (2004) Zbl1203.30035MR2096455DOI10.1007/BF02392741
  23. Yang, C. C., 10.1007/BF01110921, Math. Z. 125 (1972), 107-112. (1972) Zbl0217.38402MR0294642DOI10.1007/BF01110921
  24. Yang, C.-C., Hua, X., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. (1997) Zbl0890.30019MR1469799
  25. Yang, C.-C., Yi, H.-X., 10.1007/978-94-017-3626-8, Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). (2003) Zbl1070.30011MR2105668DOI10.1007/978-94-017-3626-8
  26. Yi, H. X., On characteristic function of a meromorphic function and its derivative, Indian J. Math. 33 (1991), 119-133. (1991) Zbl0799.30018MR1140875
  27. Zalcman, L., 10.2307/2319796, Am. Math. Mon. 82 (1975), 813-817. (1975) Zbl0315.30036MR0379852DOI10.2307/2319796
  28. Zhang, J., 10.1016/j.camwa.2008.07.006, Comput. Math. Appl. 56 (2008), 3079-3087. (2008) Zbl1165.30362MR2474563DOI10.1016/j.camwa.2008.07.006
  29. Zhang, Q., Meromorphic function that shares one small function with its derivative, JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 116, 13 pages. (2005) Zbl1097.30033MR2178297
  30. Zhang, T., Lü, W., 10.1016/j.camwa.2007.11.029, Comput. Math. Appl. 55 (2008), 2981-2992. (2008) Zbl1142.30330MR2401445DOI10.1016/j.camwa.2007.11.029
  31. Zhang, X.-Y., Lin, W.-C., 10.1016/j.jmaa.2008.10.051, J. Math. Anal. Appl. 352 (2009), page 971. (2009) Zbl1160.30345MR2501943DOI10.1016/j.jmaa.2008.10.051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.