On real flag manifolds with cup-length equal to its dimension
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 299-310
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRadovanović, Marko. "On real flag manifolds with cup-length equal to its dimension." Czechoslovak Mathematical Journal 70.2 (2020): 299-310. <http://eudml.org/doc/297160>.
@article{Radovanović2020,
abstract = {We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.},
author = {Radovanović, Marko},
journal = {Czechoslovak Mathematical Journal},
keywords = {cup-length; flag manifold; Lyusternik-Shnirel'man category},
language = {eng},
number = {2},
pages = {299-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On real flag manifolds with cup-length equal to its dimension},
url = {http://eudml.org/doc/297160},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Radovanović, Marko
TI - On real flag manifolds with cup-length equal to its dimension
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 299
EP - 310
AB - We prove that for any positive integers $n_1,n_2,\ldots ,n_k$ there exists a real flag manifold $F(1,\ldots ,1,n_1,n_2,\ldots ,n_k)$ with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.
LA - eng
KW - cup-length; flag manifold; Lyusternik-Shnirel'man category
UR - http://eudml.org/doc/297160
ER -
References
top- Berstein, I., 10.1017/S0305004100052142, Math. Proc. Camb. Philos. Soc. 79 (1976), 129-134. (1976) Zbl0315.55011MR0400212DOI10.1017/S0305004100052142
- Borel, A., 10.1007/BF02564561, Comment. Math. Helv. 27 (1953), 165-197 French. (1953) Zbl0052.40301MR0057541DOI10.1007/BF02564561
- Hiller, H. L., 10.2307/1998310, Trans. Am. Math. Soc. 257 (1980), 521-533. (1980) Zbl0462.57021MR0552272DOI10.2307/1998310
- Horanská, L'., Korbaš, J., 10.36045/bbms/1103055716, Bull. Belg. Math. Soc. -- Simon Stevin 7 (2000), 21-28. (2000) Zbl0956.55010MR1741743DOI10.36045/bbms/1103055716
- Korbaš, J., Lörinc, J., 10.4064/fm178-2-4, Fundam. Math. 178 (2003), 143-158. (2003) Zbl1052.55006MR2029922DOI10.4064/fm178-2-4
- Petrović, Z. Z., Prvulović, B. I., Radovanović, M., 10.1007/s10474-016-0625-y, Acta Math. Hung. 149 (2016), 448-461. (2016) Zbl1389.57006MR3518647DOI10.1007/s10474-016-0625-y
- Petrović, Z. Z., Prvulović, B. I., Radovanović, M., 10.1016/j.jsc.2019.06.008, (to appear) in J. Symb. Comput. MR4109710DOI10.1016/j.jsc.2019.06.008
- Radovanović, M., 10.1515/ms-2016-0204, Math. Slovaca 66 (2016), 1065-1082. (2016) Zbl1399.13029MR3602604DOI10.1515/ms-2016-0204
- Radovanović, M., 10.2298/FIL1606577R, Filomat 30 (2016), 1577-1590. (2016) Zbl06749816MR3530103DOI10.2298/FIL1606577R
- Stong, R. E., 10.1016/0166-8641(82)90012-8, Topology Appl. 13 (1982), 103-113. (1982) Zbl0469.55005MR0637432DOI10.1016/0166-8641(82)90012-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.