Displaying similar documents to “On real flag manifolds with cup-length equal to its dimension”

On the classification of 3 -dimensional F -manifold algebras

Zhiqi Chen, Jifu Li, Ming Ding (2022)

Czechoslovak Mathematical Journal

Similarity:

F -manifold algebras are focused on the algebraic properties of the tangent sheaf of F -manifolds. The local classification of 3-dimensional F -manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional F -manifold algebras over the complex field .

Remarks on the behaviour of higher-order derivations on the gluing of differential spaces

Krzysztof Drachal (2015)

Czechoslovak Mathematical Journal

Similarity:

This paper is about some geometric properties of the gluing of order k in the category of Sikorski differential spaces, where k is assumed to be an arbitrary natural number. Differential spaces are one of possible generalizations of the concept of an infinitely differentiable manifold. It is known that in many (very important) mathematical models, the manifold structure breaks down. Therefore it is important to introduce a more general concept. In this paper, in particular, the behaviour...

The Killing Tensors on an n -dimensional Manifold with S L ( n , ) -structure

Sergey E. Stepanov, Irina I. Tsyganok, Marina B. Khripunova (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper we solve the problem of finding integrals of equations determining the Killing tensors on an n -dimensional differentiable manifold M endowed with an equiaffine S L ( n , ) -structure and discuss possible applications of obtained results in Riemannian geometry.

Non-embeddable 1 -convex manifolds

Jan Stevens (2014)

Annales de l’institut Fourier

Similarity:

We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable 1 -convex manifold. We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type ( 1 , - 3 ) . To this end we study small resolutions of c D 4 -singularities.

Grassmann manifold V 3 4 in the projective space P 7 with characteristics consisting of a quadric and two planes

Josef Vala (1993)

Mathematica Bohemica

Similarity:

Some results in the geometry of four-parametric manifolds of three-dimensional spaces in the projective space P 7 are found. The properties of such a manifold V 3 4 with characteristics consisting of a quadric and two planes are studied. The properties of the manifold dual to V 3 4 are found. Some results in the geometry of linear spaces from [1],[2],[3],[4] are used. The notation of the quantities is the same as in [4].

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

Collapse of warped submersions

Szymon M. Walczak (2006)

Annales Polonici Mathematici

Similarity:

We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds ( M , g M ) and ( B , g B ) in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric g f on M by g f | × g M | × , g f | × T M ̂ f ̂ ² g M | × T M ̂ , where and denote the bundles of horizontal and vertical vectors. The manifold ( M , g f ) obtained that way is called a warped submersion. The function f is called a warping function. We show...

Z k -actions with a special fixed point set

Pedro L. Q. Pergher, Rogério de Oliveira (2005)

Fundamenta Mathematicae

Similarity:

Let Fⁿ be a connected, smooth and closed n-dimensional manifold satisfying the following property: if N m is any smooth and closed m-dimensional manifold with m > n and T : N m N m is a smooth involution whose fixed point set is Fⁿ, then m = 2n. We describe the equivariant cobordism classification of smooth actions ( M m ; Φ ) of the group G = Z k on closed smooth m-dimensional manifolds M m for which the fixed point set of the action is a submanifold Fⁿ with the above property. This generalizes a result of F....

Open Subsets of LF-spaces

Kotaro Mine, Katsuro Sakai (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and = i n d l i m (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

On the structure of closed 3-manifolds

Jan Mycielski (2003)

Fundamenta Mathematicae

Similarity:

We will show that for every irreducible closed 3-manifold M, other than the real projective space P³, there exists a piecewise linear map f: S → M where S is a non-orientable closed 2-manifold of Euler characteristic χ ≡ 2 (mod 3) such that | f - 1 ( x ) | 2 for all x ∈ M, the closure of the set x M : | f - 1 ( x ) | = 2 is a cubic graph G such that S - f - 1 ( G ) consists of 1/3(2-χ) + 2 simply connected regions, M - f(S) consists of two disjoint open 3-cells such that f(S) is the boundary of each of them, and f has some additional interesting...

Finite orbit decomposition of real flag manifolds

Bernhard Krötz, Henrik Schlichtkrull (2016)

Journal of the European Mathematical Society

Similarity:

Let G be a connected real semi-simple Lie group and H a closed connected subgroup. Let P be a minimal parabolic subgroup of G . It is shown that H has an open orbit on the flag manifold G / P if and only if it has finitely many orbits on G / P . This confirms a conjecture by T. Matsuki.

Commuting involutions whose fixed point set consists of two special components

Pedro L. Q. Pergher, Rogério de Oliveira (2008)

Fundamenta Mathematicae

Similarity:

Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property when it has the following property: if N m is any smooth closed m-dimensional manifold with m > n and T : N m N m is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces R P 2 n , C P 2 n and H P 2 n , and the connected sum of R P 2 n and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere...

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

Similarity:

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold...