On TI-subgroups and QTI-subgroups of finite groups

Ruifang Chen; Xianhe Zhao

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 179-185
  • ISSN: 0011-4642

Abstract

top
Let G be a group. A subgroup H of G is called a TI-subgroup if H H g = 1 or H for every g G and H is called a QTI-subgroup if C G ( x ) N G ( H ) for any 1 x H . In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.

How to cite

top

Chen, Ruifang, and Zhao, Xianhe. "On TI-subgroups and QTI-subgroups of finite groups." Czechoslovak Mathematical Journal 70.1 (2020): 179-185. <http://eudml.org/doc/297161>.

@article{Chen2020,
abstract = {Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\ne x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.},
author = {Chen, Ruifang, Zhao, Xianhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group},
language = {eng},
number = {1},
pages = {179-185},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On TI-subgroups and QTI-subgroups of finite groups},
url = {http://eudml.org/doc/297161},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Chen, Ruifang
AU - Zhao, Xianhe
TI - On TI-subgroups and QTI-subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 179
EP - 185
AB - Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\ne x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
LA - eng
KW - TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
UR - http://eudml.org/doc/297161
ER -

References

top
  1. Arad, Z., Herfort, W., 10.1081/AGB-120037209, Commun. Algebra 32 (2004), 2087-2098. (2004) Zbl1070.20023MR2099578DOI10.1081/AGB-120037209
  2. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper & Row, New York (1968). (1968) Zbl0185.05701MR0231903
  3. Guo, X., Li, S., Flavell, P., 10.1016/j.jalgebra.2006.10.001, J. Algebra 307 (2007), 565-569. (2007) Zbl1116.20014MR2275363DOI10.1016/j.jalgebra.2006.10.001
  4. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  5. Kurzweil, H., Stellmacher, B., 10.1007/b97433, Universitext, Springer, New York (2004). (2004) Zbl1047.20011MR2014408DOI10.1007/b97433
  6. Li, S., Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups, Math. Proc. R. Ir. Acad. 100A (2000), 65-71. (2000) Zbl0978.20012MR1882200
  7. Lu, J., Guo, X., 10.1080/00927872.2011.594135, Commun. Algebra 40 (2012), 3726-3732. (2012) Zbl1259.20021MR2982892DOI10.1080/00927872.2011.594135
  8. Lu, J., Pang, L., 10.1007/s12044-012-0055-x, Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. (2012) Zbl1272.20018MR2909585DOI10.1007/s12044-012-0055-x
  9. Lu, J., Pang, L., Zhong, X., 10.1007/s00605-012-0432-7, Monatsh. Math. 171 (2013), 425-431. (2013) Zbl1277.20017MR3090801DOI10.1007/s00605-012-0432-7
  10. Qian, G., Tang, F., 10.1016/j.jalgebra.2008.08.009, J. Algebra 320 (2008), 3605-3611. (2008) Zbl1178.20014MR2455518DOI10.1016/j.jalgebra.2008.08.009
  11. Robinson, D. J. S., 10.1007/978-1-4419-8594-1, Graduate Texts in Mathematics 80, Springer, New York (1996). (1996) Zbl0836.20001MR1357169DOI10.1007/978-1-4419-8594-1
  12. Shi, J., Zhang, C., 10.1142/S0219498813500746, J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. (2014) Zbl1285.20020MR3096855DOI10.1142/S0219498813500746
  13. Walls, G., 10.1007/BF01238459, Arch. Math. 32 (1979), 1-4. (1979) Zbl0388.20011MR0532840DOI10.1007/BF01238459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.