On TI-subgroups and QTI-subgroups of finite groups
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 179-185
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Ruifang, and Zhao, Xianhe. "On TI-subgroups and QTI-subgroups of finite groups." Czechoslovak Mathematical Journal 70.1 (2020): 179-185. <http://eudml.org/doc/297161>.
@article{Chen2020,
abstract = {Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\ne x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.},
author = {Chen, Ruifang, Zhao, Xianhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group},
language = {eng},
number = {1},
pages = {179-185},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On TI-subgroups and QTI-subgroups of finite groups},
url = {http://eudml.org/doc/297161},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Chen, Ruifang
AU - Zhao, Xianhe
TI - On TI-subgroups and QTI-subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 179
EP - 185
AB - Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\ne x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
LA - eng
KW - TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
UR - http://eudml.org/doc/297161
ER -
References
top- Arad, Z., Herfort, W., 10.1081/AGB-120037209, Commun. Algebra 32 (2004), 2087-2098. (2004) Zbl1070.20023MR2099578DOI10.1081/AGB-120037209
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper & Row, New York (1968). (1968) Zbl0185.05701MR0231903
- Guo, X., Li, S., Flavell, P., 10.1016/j.jalgebra.2006.10.001, J. Algebra 307 (2007), 565-569. (2007) Zbl1116.20014MR2275363DOI10.1016/j.jalgebra.2006.10.001
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Kurzweil, H., Stellmacher, B., 10.1007/b97433, Universitext, Springer, New York (2004). (2004) Zbl1047.20011MR2014408DOI10.1007/b97433
- Li, S., Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups, Math. Proc. R. Ir. Acad. 100A (2000), 65-71. (2000) Zbl0978.20012MR1882200
- Lu, J., Guo, X., 10.1080/00927872.2011.594135, Commun. Algebra 40 (2012), 3726-3732. (2012) Zbl1259.20021MR2982892DOI10.1080/00927872.2011.594135
- Lu, J., Pang, L., 10.1007/s12044-012-0055-x, Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. (2012) Zbl1272.20018MR2909585DOI10.1007/s12044-012-0055-x
- Lu, J., Pang, L., Zhong, X., 10.1007/s00605-012-0432-7, Monatsh. Math. 171 (2013), 425-431. (2013) Zbl1277.20017MR3090801DOI10.1007/s00605-012-0432-7
- Qian, G., Tang, F., 10.1016/j.jalgebra.2008.08.009, J. Algebra 320 (2008), 3605-3611. (2008) Zbl1178.20014MR2455518DOI10.1016/j.jalgebra.2008.08.009
- Robinson, D. J. S., 10.1007/978-1-4419-8594-1, Graduate Texts in Mathematics 80, Springer, New York (1996). (1996) Zbl0836.20001MR1357169DOI10.1007/978-1-4419-8594-1
- Shi, J., Zhang, C., 10.1142/S0219498813500746, J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. (2014) Zbl1285.20020MR3096855DOI10.1142/S0219498813500746
- Walls, G., 10.1007/BF01238459, Arch. Math. 32 (1979), 1-4. (1979) Zbl0388.20011MR0532840DOI10.1007/BF01238459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.