The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On TI-subgroups and QTI-subgroups of finite groups”

Finite groups with some SS-supplemented subgroups

Mengling Jiang, Jianjun Liu (2021)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be SS-supplemented in G if there exists a subgroup K of G such that G = H K and H K is S-quasinormal in K . We analyze how certain properties of SS-supplemented subgroups influence the structure of finite groups. Our results improve and generalize several recent results.

Every 2 -group with all subgroups normal-by-finite is locally finite

Enrico Jabara (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G has all of its subgroups normal-by-finite if H / H G is finite for all subgroups H of G . The Tarski-groups provide examples of p -groups ( p a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2 -group with every subgroup normal-by-finite is locally finite. We also prove that if | H / H G | 2 for every subgroup H of G , then G contains an Abelian subgroup of index at most 8 .

On weakly-supplemented subgroups of finite groups

Qingjun Kong (2019)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In this paper, some interesting results with weakly-supplemented minimal subgroups to a smaller subgroup of G are obtained.

A note on weakly-supplemented subgroups and the solvability of finite groups

Xin Liang, Baiyan Xu (2022)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . The subgroup H is said to be weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In this note, by using the weakly-supplemented subgroups, we point out several mistakes in the proof of Theorem 1.2 of Q. Zhou (2019) and give a counterexample.

On R -conjugate-permutability of Sylow subgroups

Xianhe Zhao, Ruifang Chen (2016)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be conjugate-permutable if H H g = H g H for all g G . More generaly, if we limit the element g to a subgroup R of G , then we say that the subgroup H is R -conjugate-permutable. By means of the R -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of G and the R -conjugate-permutability of the Sylow subgroups of A and B under the condition that G = A B , where A and B are subgroups of G . Some results known in the literature are improved...

On quotients of the space of orderings of the field ℚ(x)

Paweł Gładki, Bill Jacob (2016)

Banach Center Publications

Similarity:

In this paper we present a method of obtaining new examples of spaces of orderings by considering quotient structures of the space of orderings ( X ( x ) , G ( x ) ) - it is, in general, nontrivial to determine whether, for a subgroup G G ( x ) the derived quotient structure ( X ( x ) | G , G ) is a space of orderings, and we provide some insights into this problem. In particular, we show that if a quotient structure arising from a subgroup of index 2 is a space of orderings, then it necessarily is a profinite one.

On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu, Yanyan Qiu (2015)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results...

Finite p -nilpotent groups with some subgroups weakly -supplemented

Liushuan Dong (2020)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . Subgroup H is said to be weakly -supplemented in G if there exists a subgroup B of G such that (1) G = H B , and (2) if H 1 / H G is a maximal subgroup of H / H G , then H 1 B = B H 1 < G , where H G is the largest normal subgroup of G contained in H . We fix in every noncyclic Sylow subgroup P of G a subgroup D satisfying 1 < | D | < | P | and study the p -nilpotency of G under the assumption that every subgroup H of P with | H | = | D | is weakly -supplemented in G . Some recent results are generalized. ...

Some results on Sylow numbers of finite groups

Yang Liu, Jinjie Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

A note on weakly-supplemented subgroups of finite groups

Hong Pan (2018)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In the paper, we extend one main result of Kong and Liu (2014).

On weakly-supplemented subgroups and the solvability of finite groups

Qiang Zhou (2019)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G = H K . In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of G are obtained.

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.