Double weighted commutators theorem for pseudo-differential operators with smooth symbols
Yu-long Deng; Zhi-tian Chen; Shun-chao Long
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 173-190
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDeng, Yu-long, Chen, Zhi-tian, and Long, Shun-chao. "Double weighted commutators theorem for pseudo-differential operators with smooth symbols." Czechoslovak Mathematical Journal (2021): 173-190. <http://eudml.org/doc/297164>.
@article{Deng2021,
abstract = {Let $-(n+1)<m\le -(n+1)(1-\rho )$ and let $T_\{a\}\in \mathcal \{L\}^\{m\}_\{\rho ,\delta \}$ be pseudo-differential operators with symbols $a(x,\xi )\in \mathbb \{R\}^n\times \mathbb \{R\}^n$, where $0<\rho \le 1$, $0\le \delta <1$ and $\delta \le \rho $. Let $\mu $, $\lambda $ be weights in Muckenhoupt classes $A_\{p\}$, $\nu =(\mu \lambda ^\{-1\})^\{1/p\}$ for some $1<p<\infty $. We establish a two-weight inequality for commutators generated by pseudo-differential operators $T_\{a\}$ with weighted BMO functions $b\in \{\rm BMO\}_\{\nu \}$, namely, the commutator $[b,T_\{a\}]$ is bounded from $L^\{p\}(\mu )$ into $L^\{p\}(\lambda )$. Furthermore, the range of $m$ can be extended to the whole $m\le -(n+1)(1-\rho )$.},
author = {Deng, Yu-long, Chen, Zhi-tian, Long, Shun-chao},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo-differential operator; reverse Hölder inequality; $A_p$ weight; commutator},
language = {eng},
number = {1},
pages = {173-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Double weighted commutators theorem for pseudo-differential operators with smooth symbols},
url = {http://eudml.org/doc/297164},
year = {2021},
}
TY - JOUR
AU - Deng, Yu-long
AU - Chen, Zhi-tian
AU - Long, Shun-chao
TI - Double weighted commutators theorem for pseudo-differential operators with smooth symbols
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 173
EP - 190
AB - Let $-(n+1)<m\le -(n+1)(1-\rho )$ and let $T_{a}\in \mathcal {L}^{m}_{\rho ,\delta }$ be pseudo-differential operators with symbols $a(x,\xi )\in \mathbb {R}^n\times \mathbb {R}^n$, where $0<\rho \le 1$, $0\le \delta <1$ and $\delta \le \rho $. Let $\mu $, $\lambda $ be weights in Muckenhoupt classes $A_{p}$, $\nu =(\mu \lambda ^{-1})^{1/p}$ for some $1<p<\infty $. We establish a two-weight inequality for commutators generated by pseudo-differential operators $T_{a}$ with weighted BMO functions $b\in {\rm BMO}_{\nu }$, namely, the commutator $[b,T_{a}]$ is bounded from $L^{p}(\mu )$ into $L^{p}(\lambda )$. Furthermore, the range of $m$ can be extended to the whole $m\le -(n+1)(1-\rho )$.
LA - eng
KW - pseudo-differential operator; reverse Hölder inequality; $A_p$ weight; commutator
UR - http://eudml.org/doc/297164
ER -
References
top- Alvarez, J., Hounie, J., 10.1007/BF02387364, Ark. Mat. 28 (1990), 1-22. (1990) Zbl0713.35106MR1049640DOI10.1007/BF02387364
- Auscher, P., Taylor, M. E., 10.1080/03605309508821150, Commun. Partial Differ. Equations 20 (1995), 1743-1775. (1995) Zbl0844.35149MR1349230DOI10.1080/03605309508821150
- Bloom, S., 10.1090/S0002-9947-1985-0805955-5, Trans. Am. Math. Soc. 292 (1985), 103-122. (1985) Zbl0578.42012MR0805955DOI10.1090/S0002-9947-1985-0805955-5
- Bui, T. A., 10.1155/2013/798528, Int. J. Anal. 2013 (2013), Article ID 798528, 12 pages. (2013) Zbl1268.47061MR3079558DOI10.1155/2013/798528
- Calderón, A. P., Vaillancourt, R., 10.1073/pnas.69.5.1185, Proc. Nati. Acad. Sci. USA 69 (1972), 1185-1187. (1972) Zbl0244.35074MR0298480DOI10.1073/pnas.69.5.1185
- Chanillo, S., 10.1090/conm/205/02651, Multidimensional Complex Analysis and Partial Differential Equations Contemporary Mathematics 205. American Mathematical Society, Providence (1997), 33-37. (1997) Zbl0898.47039MR1447213DOI10.1090/conm/205/02651
- Chanillo, S., Torchinsky, A., 10.1007/BF02384387, Ark. Mat. 24 (1986), 1-25. (1986) Zbl0609.35085MR0852824DOI10.1007/BF02384387
- Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
- Fefferman, C., 10.1007/BF02764718, Isr. J. Math. 14 (1973), 413-417. (1973) Zbl0259.47045MR0336453DOI10.1007/BF02764718
- Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
- Grafakos, L., 10.1007/978-1-4939-1194-3, Graduate Texts in Mathematics 249. Springer, New York (2014). (2014) Zbl1304.42001MR3243734DOI10.1007/978-1-4939-1194-3
- Holmes, I., Lacey, M. T., Wick, B. D., 10.1007/s00208-016-1378-1, Math. Ann. 367 (2017), 51-80. (2017) Zbl1364.42017MR3606434DOI10.1007/s00208-016-1378-1
- Hörmander, L., 10.1090/pspum/010/0383152, Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1967), 138-183. (1967) Zbl0167.09603MR0383152DOI10.1090/pspum/010/0383152
- Hounie, J., Kapp, R. A. S., 10.1007/s00041-008-9021-5, J. Fourier Anal. Appl. 15 (2009), 153-178. (2009) Zbl1178.35396MR2500920DOI10.1007/s00041-008-9021-5
- Hung, H. D., Ky, L. D., 10.11650/tjm.19.2015.5003, Taiwanese J. Math. 19 (2015), 1097-1109. (2015) Zbl1357.47051MR3384681DOI10.11650/tjm.19.2015.5003
- Kohn, J. J., Nirenberg, L., 10.1002/cpa.3160180121, Commun. Pure Appl. Math. 18 (1965), 269-305. (1965) Zbl0171.35101MR0176362DOI10.1002/cpa.3160180121
- Laptev, A. A., Spectral asymptotics of a certain class of Fourier integral operators, Tr. Mosk. Mat. O.-va 43 (1981), 92-115 Russian. (1981) Zbl0503.47044MR0651330
- Lerner, A. K., On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), 277-290. (1998) Zbl0947.42012MR1638347
- Lin, Y., 10.1007/s11425-008-0035-x, Sci. China, Ser. A 51 (2008), 453-460. (2008) Zbl1213.42047MR2395439DOI10.1007/s11425-008-0035-x
- Michalowski, N., Rule, D. J., Staubach, W., 10.1016/j.jfa.2010.03.013, J. Funct. Anal. 258 (2010), 4183-4209. (2010) Zbl1195.47033MR2609542DOI10.1016/j.jfa.2010.03.013
- Michalowski, N., Rule, D. J., Staubach, W., 10.4153/CMB-2011-122-7, Can. Math. Bull. 55 (2012), 555-570. (2012) Zbl1252.42019MR2957271DOI10.4153/CMB-2011-122-7
- Miller, N., 10.1090/S0002-9947-1982-0637030-4, Trans. Am. Math. Soc. 269 (1982), 91-109. (1982) Zbl0482.35082MR0637030DOI10.1090/S0002-9947-1982-0637030-4
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Muckenhoupt, B., 10.4064/sm-49-2-101-106, Studia Math. 49 (1974), 101-106. (1974) Zbl0243.44003MR0350297DOI10.4064/sm-49-2-101-106
- Nishigaki, S., 10.3836/tjm/1270152995, Tokyo J. Math. 7 (1984), 129-140. (1984) Zbl0555.35133MR0752114DOI10.3836/tjm/1270152995
- Stein, E. M., 10.1515/9781400883929, Princeton Mathematical Series 43. Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192DOI10.1515/9781400883929
- Tang, L., 10.1016/j.jfa.2011.11.016, J. Funct. Anal. 262 (2012), 1603-1629. (2012) Zbl1248.47048MR2873852DOI10.1016/j.jfa.2011.11.016
- Yabuta, K., 10.18910/7950, Osaka J. Math. 23 (1986), 703-723. (1986) Zbl0632.35079MR0866272DOI10.18910/7950
- Yang, J., Wang, Y., Chen, W., 10.1016/S0252-9602(14)60013-8, Acta Math. Sci., Ser. B, Engl. Ed. 34 (2014), 387-393. (2014) Zbl1313.42080MR3174086DOI10.1016/S0252-9602(14)60013-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.