Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Yu-long Deng; Zhi-tian Chen; Shun-chao Long

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 173-190
  • ISSN: 0011-4642

Abstract

top
Let - ( n + 1 ) < m - ( n + 1 ) ( 1 - ρ ) and let T a ρ , δ m be pseudo-differential operators with symbols a ( x , ξ ) n × n , where 0 < ρ 1 , 0 δ < 1 and δ ρ . Let μ , λ be weights in Muckenhoupt classes A p , ν = ( μ λ - 1 ) 1 / p for some 1 < p < . We establish a two-weight inequality for commutators generated by pseudo-differential operators T a with weighted BMO functions b BMO ν , namely, the commutator [ b , T a ] is bounded from L p ( μ ) into L p ( λ ) . Furthermore, the range of m can be extended to the whole m - ( n + 1 ) ( 1 - ρ ) .

How to cite

top

Deng, Yu-long, Chen, Zhi-tian, and Long, Shun-chao. "Double weighted commutators theorem for pseudo-differential operators with smooth symbols." Czechoslovak Mathematical Journal (2021): 173-190. <http://eudml.org/doc/297164>.

@article{Deng2021,
abstract = {Let $-(n+1)<m\le -(n+1)(1-\rho )$ and let $T_\{a\}\in \mathcal \{L\}^\{m\}_\{\rho ,\delta \}$ be pseudo-differential operators with symbols $a(x,\xi )\in \mathbb \{R\}^n\times \mathbb \{R\}^n$, where $0<\rho \le 1$, $0\le \delta <1$ and $\delta \le \rho $. Let $\mu $, $\lambda $ be weights in Muckenhoupt classes $A_\{p\}$, $\nu =(\mu \lambda ^\{-1\})^\{1/p\}$ for some $1<p<\infty $. We establish a two-weight inequality for commutators generated by pseudo-differential operators $T_\{a\}$ with weighted BMO functions $b\in \{\rm BMO\}_\{\nu \}$, namely, the commutator $[b,T_\{a\}]$ is bounded from $L^\{p\}(\mu )$ into $L^\{p\}(\lambda )$. Furthermore, the range of $m$ can be extended to the whole $m\le -(n+1)(1-\rho )$.},
author = {Deng, Yu-long, Chen, Zhi-tian, Long, Shun-chao},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo-differential operator; reverse Hölder inequality; $A_p$ weight; commutator},
language = {eng},
number = {1},
pages = {173-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Double weighted commutators theorem for pseudo-differential operators with smooth symbols},
url = {http://eudml.org/doc/297164},
year = {2021},
}

TY - JOUR
AU - Deng, Yu-long
AU - Chen, Zhi-tian
AU - Long, Shun-chao
TI - Double weighted commutators theorem for pseudo-differential operators with smooth symbols
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 173
EP - 190
AB - Let $-(n+1)<m\le -(n+1)(1-\rho )$ and let $T_{a}\in \mathcal {L}^{m}_{\rho ,\delta }$ be pseudo-differential operators with symbols $a(x,\xi )\in \mathbb {R}^n\times \mathbb {R}^n$, where $0<\rho \le 1$, $0\le \delta <1$ and $\delta \le \rho $. Let $\mu $, $\lambda $ be weights in Muckenhoupt classes $A_{p}$, $\nu =(\mu \lambda ^{-1})^{1/p}$ for some $1<p<\infty $. We establish a two-weight inequality for commutators generated by pseudo-differential operators $T_{a}$ with weighted BMO functions $b\in {\rm BMO}_{\nu }$, namely, the commutator $[b,T_{a}]$ is bounded from $L^{p}(\mu )$ into $L^{p}(\lambda )$. Furthermore, the range of $m$ can be extended to the whole $m\le -(n+1)(1-\rho )$.
LA - eng
KW - pseudo-differential operator; reverse Hölder inequality; $A_p$ weight; commutator
UR - http://eudml.org/doc/297164
ER -

References

top
  1. Alvarez, J., Hounie, J., 10.1007/BF02387364, Ark. Mat. 28 (1990), 1-22. (1990) Zbl0713.35106MR1049640DOI10.1007/BF02387364
  2. Auscher, P., Taylor, M. E., 10.1080/03605309508821150, Commun. Partial Differ. Equations 20 (1995), 1743-1775. (1995) Zbl0844.35149MR1349230DOI10.1080/03605309508821150
  3. Bloom, S., 10.1090/S0002-9947-1985-0805955-5, Trans. Am. Math. Soc. 292 (1985), 103-122. (1985) Zbl0578.42012MR0805955DOI10.1090/S0002-9947-1985-0805955-5
  4. Bui, T. A., 10.1155/2013/798528, Int. J. Anal. 2013 (2013), Article ID 798528, 12 pages. (2013) Zbl1268.47061MR3079558DOI10.1155/2013/798528
  5. Calderón, A. P., Vaillancourt, R., 10.1073/pnas.69.5.1185, Proc. Nati. Acad. Sci. USA 69 (1972), 1185-1187. (1972) Zbl0244.35074MR0298480DOI10.1073/pnas.69.5.1185
  6. Chanillo, S., 10.1090/conm/205/02651, Multidimensional Complex Analysis and Partial Differential Equations Contemporary Mathematics 205. American Mathematical Society, Providence (1997), 33-37. (1997) Zbl0898.47039MR1447213DOI10.1090/conm/205/02651
  7. Chanillo, S., Torchinsky, A., 10.1007/BF02384387, Ark. Mat. 24 (1986), 1-25. (1986) Zbl0609.35085MR0852824DOI10.1007/BF02384387
  8. Coifman, R. R., Rochberg, R., Weiss, G., 10.2307/1970954, Ann. Math. (2) 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721DOI10.2307/1970954
  9. Fefferman, C., 10.1007/BF02764718, Isr. J. Math. 14 (1973), 413-417. (1973) Zbl0259.47045MR0336453DOI10.1007/BF02764718
  10. Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
  11. Grafakos, L., 10.1007/978-1-4939-1194-3, Graduate Texts in Mathematics 249. Springer, New York (2014). (2014) Zbl1304.42001MR3243734DOI10.1007/978-1-4939-1194-3
  12. Holmes, I., Lacey, M. T., Wick, B. D., 10.1007/s00208-016-1378-1, Math. Ann. 367 (2017), 51-80. (2017) Zbl1364.42017MR3606434DOI10.1007/s00208-016-1378-1
  13. Hörmander, L., 10.1090/pspum/010/0383152, Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1967), 138-183. (1967) Zbl0167.09603MR0383152DOI10.1090/pspum/010/0383152
  14. Hounie, J., Kapp, R. A. S., 10.1007/s00041-008-9021-5, J. Fourier Anal. Appl. 15 (2009), 153-178. (2009) Zbl1178.35396MR2500920DOI10.1007/s00041-008-9021-5
  15. Hung, H. D., Ky, L. D., 10.11650/tjm.19.2015.5003, Taiwanese J. Math. 19 (2015), 1097-1109. (2015) Zbl1357.47051MR3384681DOI10.11650/tjm.19.2015.5003
  16. Kohn, J. J., Nirenberg, L., 10.1002/cpa.3160180121, Commun. Pure Appl. Math. 18 (1965), 269-305. (1965) Zbl0171.35101MR0176362DOI10.1002/cpa.3160180121
  17. Laptev, A. A., Spectral asymptotics of a certain class of Fourier integral operators, Tr. Mosk. Mat. O.-va 43 (1981), 92-115 Russian. (1981) Zbl0503.47044MR0651330
  18. Lerner, A. K., On weighted estimates of non-increasing rearrangements, East J. Approx. 4 (1998), 277-290. (1998) Zbl0947.42012MR1638347
  19. Lin, Y., 10.1007/s11425-008-0035-x, Sci. China, Ser. A 51 (2008), 453-460. (2008) Zbl1213.42047MR2395439DOI10.1007/s11425-008-0035-x
  20. Michalowski, N., Rule, D. J., Staubach, W., 10.1016/j.jfa.2010.03.013, J. Funct. Anal. 258 (2010), 4183-4209. (2010) Zbl1195.47033MR2609542DOI10.1016/j.jfa.2010.03.013
  21. Michalowski, N., Rule, D. J., Staubach, W., 10.4153/CMB-2011-122-7, Can. Math. Bull. 55 (2012), 555-570. (2012) Zbl1252.42019MR2957271DOI10.4153/CMB-2011-122-7
  22. Miller, N., 10.1090/S0002-9947-1982-0637030-4, Trans. Am. Math. Soc. 269 (1982), 91-109. (1982) Zbl0482.35082MR0637030DOI10.1090/S0002-9947-1982-0637030-4
  23. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  24. Muckenhoupt, B., 10.4064/sm-49-2-101-106, Studia Math. 49 (1974), 101-106. (1974) Zbl0243.44003MR0350297DOI10.4064/sm-49-2-101-106
  25. Nishigaki, S., 10.3836/tjm/1270152995, Tokyo J. Math. 7 (1984), 129-140. (1984) Zbl0555.35133MR0752114DOI10.3836/tjm/1270152995
  26. Stein, E. M., 10.1515/9781400883929, Princeton Mathematical Series 43. Princeton University Press, Princeton (1993). (1993) Zbl0821.42001MR1232192DOI10.1515/9781400883929
  27. Tang, L., 10.1016/j.jfa.2011.11.016, J. Funct. Anal. 262 (2012), 1603-1629. (2012) Zbl1248.47048MR2873852DOI10.1016/j.jfa.2011.11.016
  28. Yabuta, K., 10.18910/7950, Osaka J. Math. 23 (1986), 703-723. (1986) Zbl0632.35079MR0866272DOI10.18910/7950
  29. Yang, J., Wang, Y., Chen, W., 10.1016/S0252-9602(14)60013-8, Acta Math. Sci., Ser. B, Engl. Ed. 34 (2014), 387-393. (2014) Zbl1313.42080MR3174086DOI10.1016/S0252-9602(14)60013-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.