The centre of a Steiner loop and the maxi-Pasch problem
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 4, page 535-545
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKozlik, Andrew R.. "The centre of a Steiner loop and the maxi-Pasch problem." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 535-545. <http://eudml.org/doc/297170>.
@article{Kozlik2020,
abstract = {A binary operation “$\cdot $” which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.},
author = {Kozlik, Andrew R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Steiner loop; centre; nucleus; Steiner triple system; Pasch configuration; quadrilateral},
language = {eng},
number = {4},
pages = {535-545},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The centre of a Steiner loop and the maxi-Pasch problem},
url = {http://eudml.org/doc/297170},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Kozlik, Andrew R.
TI - The centre of a Steiner loop and the maxi-Pasch problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 535
EP - 545
AB - A binary operation “$\cdot $” which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.
LA - eng
KW - Steiner loop; centre; nucleus; Steiner triple system; Pasch configuration; quadrilateral
UR - http://eudml.org/doc/297170
ER -
References
top- Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1971. Zbl0141.01401MR0093552
- Colbourn C. J., 10.2478/s12175-008-0111-2, Math. Slovaca 59 (2009), no. 1, 77–108. MR2471691DOI10.2478/s12175-008-0111-2
- Colbourn C. J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
- Danziger P., Mendelsohn E., Grannell M. J., Griggs T. S., Five-line configurations in Steiner triple systems, Utilitas Math. 49 (1996), 153–159. MR1396296
- Di Paola J. W., 10.1080/00029890.1969.12000185, Amer. Math. Monthly 76 (1969), 249–252. MR0240231DOI10.1080/00029890.1969.12000185
- Donovan D., The centre of a sloop, Combinatorial Mathematics and Combinatorial Computing, Australas. J. Combin. 1 (1990), 83–89. MR1126969
- Donovan D., Rahilly A., The central spectrum of the order of a Steiner loop, Southeast Asian Bull. Math. 16 (1992), no. 2, 115–121. MR1205545
- Drápal A., 10.1016/0012-365X(83)90189-9, Discrete Math. 44 (1983), no. 3, 251–265. MR0696286DOI10.1016/0012-365X(83)90189-9
- Grannell M. J., Griggs T. S., Mendelsohn E., 10.1002/jcd.3180030107, J. Combin. Des. 3 (1995), no. 1, 51–59. MR1305447DOI10.1002/jcd.3180030107
- Grannell M. J., Griggs T. S., Whitehead C. A., 10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R, J. Combin. Des. 8 (2000), no. 4, 300–309. MR1762019DOI10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R
- Grannell M. J., Lovegrove G. J., Maximizing the number of Pasch configurations in a Steiner triple system, Bull. Inst. Combin. Appl. 69 (2013), 23–35. MR3155869
- Gray B. D., Ramsay C., On the number of Pasch configurations in a Steiner triple system, Bull. Inst. Combin. Appl. 24 (1998), 105–112. MR1641476
- Kaski P., Östergård P. R. J., 10.1090/S0025-5718-04-01626-6, Math. Comp. 73 (2004), no. 248, 2075–2092. MR2059752DOI10.1090/S0025-5718-04-01626-6
- Kirkman T. P., On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204.
- Ling A. C. H., Colbourn C. J., Grannell M. J., Griggs T. S., 10.1112/S0024610700008838, J. London Math. Soc. (2) 61 (2000), no. 3, 641–657. MR1765934DOI10.1112/S0024610700008838
- McCune W., Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 2003.
- Stinson D. R., Wei Y. J., 10.1016/0012-365X(92)90143-4, Discrete Math. 105 (1992), no. 1–3, 207–219. MR1180204DOI10.1016/0012-365X(92)90143-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.