The centre of a Steiner loop and the maxi-Pasch problem

Andrew R. Kozlik

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 4, page 535-545
  • ISSN: 0010-2628

Abstract

top
A binary operation “ · ” which satisfies the identities x · e = x , x · x = e , ( x · y ) · x = y and x · y = y · x is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order n with centre of order m and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.

How to cite

top

Kozlik, Andrew R.. "The centre of a Steiner loop and the maxi-Pasch problem." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 535-545. <http://eudml.org/doc/297170>.

@article{Kozlik2020,
abstract = {A binary operation “$\cdot $” which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.},
author = {Kozlik, Andrew R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Steiner loop; centre; nucleus; Steiner triple system; Pasch configuration; quadrilateral},
language = {eng},
number = {4},
pages = {535-545},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The centre of a Steiner loop and the maxi-Pasch problem},
url = {http://eudml.org/doc/297170},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Kozlik, Andrew R.
TI - The centre of a Steiner loop and the maxi-Pasch problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 535
EP - 545
AB - A binary operation “$\cdot $” which satisfies the identities $x\cdot e = x$, $x \cdot x = e$, $(x \cdot y) \cdot x = y$ and $x \cdot y = y \cdot x$ is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order $n$ with centre of order $m$ and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be maxi-Pasch. We show that loop factorization preserves the maxi-Pasch property and find that the Steiner loops of all currently known maxi-Pasch Steiner triple systems have centre of maximum possible order.
LA - eng
KW - Steiner loop; centre; nucleus; Steiner triple system; Pasch configuration; quadrilateral
UR - http://eudml.org/doc/297170
ER -

References

top
  1. Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Reihe: Gruppentheorie, Springer, Berlin, 1971. Zbl0141.01401MR0093552
  2. Colbourn C. J., 10.2478/s12175-008-0111-2, Math. Slovaca 59 (2009), no. 1, 77–108. MR2471691DOI10.2478/s12175-008-0111-2
  3. Colbourn C. J., Rosa A., Triple Systems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Zbl1030.05017MR1843379
  4. Danziger P., Mendelsohn E., Grannell M. J., Griggs T. S., Five-line configurations in Steiner triple systems, Utilitas Math. 49 (1996), 153–159. MR1396296
  5. Di Paola J. W., 10.1080/00029890.1969.12000185, Amer. Math. Monthly 76 (1969), 249–252. MR0240231DOI10.1080/00029890.1969.12000185
  6. Donovan D., The centre of a sloop, Combinatorial Mathematics and Combinatorial Computing, Australas. J. Combin. 1 (1990), 83–89. MR1126969
  7. Donovan D., Rahilly A., The central spectrum of the order of a Steiner loop, Southeast Asian Bull. Math. 16 (1992), no. 2, 115–121. MR1205545
  8. Drápal A., 10.1016/0012-365X(83)90189-9, Discrete Math. 44 (1983), no. 3, 251–265. MR0696286DOI10.1016/0012-365X(83)90189-9
  9. Grannell M. J., Griggs T. S., Mendelsohn E., 10.1002/jcd.3180030107, J. Combin. Des. 3 (1995), no. 1, 51–59. MR1305447DOI10.1002/jcd.3180030107
  10. Grannell M. J., Griggs T. S., Whitehead C. A., 10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R, J. Combin. Des. 8 (2000), no. 4, 300–309. MR1762019DOI10.1002/1520-6610(2000)8:4<300::AID-JCD7>3.0.CO;2-R
  11. Grannell M. J., Lovegrove G. J., Maximizing the number of Pasch configurations in a Steiner triple system, Bull. Inst. Combin. Appl. 69 (2013), 23–35. MR3155869
  12. Gray B. D., Ramsay C., On the number of Pasch configurations in a Steiner triple system, Bull. Inst. Combin. Appl. 24 (1998), 105–112. MR1641476
  13. Kaski P., Östergård P. R. J., 10.1090/S0025-5718-04-01626-6, Math. Comp. 73 (2004), no. 248, 2075–2092. MR2059752DOI10.1090/S0025-5718-04-01626-6
  14. Kirkman T. P., On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204. 
  15. Ling A. C. H., Colbourn C. J., Grannell M. J., Griggs T. S., 10.1112/S0024610700008838, J. London Math. Soc. (2) 61 (2000), no. 3, 641–657. MR1765934DOI10.1112/S0024610700008838
  16. McCune W., Mace4 Reference Manual and Guide, Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 2003. 
  17. Stinson D. R., Wei Y. J., 10.1016/0012-365X(92)90143-4, Discrete Math. 105 (1992), no. 1–3, 207–219. MR1180204DOI10.1016/0012-365X(92)90143-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.