Displaying similar documents to “The centre of a Steiner loop and the maxi-Pasch problem”

Nonassociative triples in involutory loops and in loops of small order

Aleš Drápal, Jan Hora (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A loop of order n possesses at least 3 n 2 - 3 n + 1 associative triples. However, no loop of order n > 1 that achieves this bound seems to be known. If the loop is involutory, then it possesses at least 3 n 2 - 2 n associative triples. Involutory loops with 3 n 2 - 2 n associative triples can be obtained by prolongation of certain maximally nonassociative quasigroups whenever n - 1 is a prime greater than or equal to 13 or n - 1 = p 2 k , p an odd prime. For orders n 9 the minimum number of associative triples is reported for both general...

Automorphic loops and metabelian groups

Mark Greer, Lee Raney (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a uniquely 2-divisible group G , we study a commutative loop ( G , ) which arises as a result of a construction in “Engelsche elemente noetherscher gruppen” (1957) by R. Baer. We investigate some general properties and applications of “ ” and determine a necessary and sufficient condition on G in order for ( G , ) to be Moufang. In “A class of loops categorically isomorphic to Bruck loops of odd order” (2014) by M. Greer, it is conjectured that G is metabelian if and only if ( G , ) is an automorphic...

On dicyclic groups as inner mapping groups of finite loops

Emma Leppälä, Markku Niemenmaa (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group with a dicyclic subgroup H . We show that if there exist H -connected transversals in G , then G is a solvable group. We apply this result to loop theory and show that if the inner mapping group I ( Q ) of a finite loop Q is dicyclic, then Q is a solvable loop. We also discuss a more general solvability criterion in the case where I ( Q ) is a certain type of a direct product.

Antiflexible Latin directed triple systems

Andrew R. Kozlik (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is well known that given a Steiner triple system one can define a quasigroup operation · upon its base set by assigning x · x = x for all x and x · y = z , where z is the third point in the block containing the pair { x , y } . The same can be done for Mendelsohn triple systems, where ( x , y ) is considered to be ordered. But this is not necessarily the case for directed triple systems. However there do exist directed triple systems, which induce a quasigroup under this operation and these are called Latin directed...

Linear operator identities in quasigroups

Reza Akhtar (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study identities of the form L x 0 ϕ 1 ϕ n R x n + 1 = R x n + 1 ϕ σ ( 1 ) ϕ σ ( n ) L x 0 in quasigroups, where n 1 , σ is a permutation of { 1 , ... , n } , and for each i , ϕ i is either L x i or R x i . We prove that in a quasigroup, every such identity implies commutativity. Moreover, if σ is chosen randomly and uniformly, it also satisfies associativity with probability approaching 1 as n .

Coincidence for substitutions of Pisot type

Marcy Barge, Beverly Diamond (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let ϕ be a substitution of Pisot type on the alphabet 𝒜 = { 1 , 2 , ... , d } ; ϕ satisfies theif for every i , j 𝒜 , there are integers k , n such that ϕ n ( i ) and ϕ n ( j ) have the same k -th letter, and the prefixes of length k - 1 of ϕ n ( i ) and ϕ n ( j ) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d 2 .

Some results on spaces with 1 -calibre

Wei-Feng Xuan, Wei-Xue Shi (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that, assuming , if X is a space with 1 -calibre and a zeroset diagonal, then X is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular G δ -diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. We also make some observations on spaces with 1 -calibre.

On multiset colorings of generalized corona graphs

Yun Feng, Wensong Lin (2016)

Mathematica Bohemica

Similarity:

A vertex k -coloring of a graph G is a if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the χ m ( G ) of G . For an integer 0 , the - of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for - of all complete graphs, the regular complete...

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...