One-adhesive polymatroids

Laszlo Csirmaz

Kybernetika (2020)

  • Volume: 56, Issue: 5, page 886-902
  • ISSN: 0023-5954

Abstract

top
Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.

How to cite

top

Csirmaz, Laszlo. "One-adhesive polymatroids." Kybernetika 56.5 (2020): 886-902. <http://eudml.org/doc/297175>.

@article{Csirmaz2020,
abstract = {Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.},
author = {Csirmaz, Laszlo},
journal = {Kybernetika},
keywords = {polymatroid; amalgam; adhesive polymatroid; entropy function; polyhedral cone},
language = {eng},
number = {5},
pages = {886-902},
publisher = {Institute of Information Theory and Automation AS CR},
title = {One-adhesive polymatroids},
url = {http://eudml.org/doc/297175},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Csirmaz, Laszlo
TI - One-adhesive polymatroids
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 886
EP - 902
AB - Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.
LA - eng
KW - polymatroid; amalgam; adhesive polymatroid; entropy function; polyhedral cone
UR - http://eudml.org/doc/297175
ER -

References

top
  1. Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W., 10.1109/18.850663, IEEE Trans. Inform. Theory 46 (2000), 1204-1216. MR1768542DOI10.1109/18.850663
  2. Bonin, J. E., 10.1007/s00026-011-0112-7, Ann. Comb. 15 (2011), 619-624. MR2854783DOI10.1007/s00026-011-0112-7
  3. Christof, T., Loebel, A., Porta: Polyhedron Representation Transformation Algorithm, Version 1.4.1. 
  4. Csirmaz, L., Matúš, F., 10.1109/tit.2016.2601598, IEEE Trans. Inf. Theory 62 (2016), 6007-6018. MR3565097DOI10.1109/tit.2016.2601598
  5. Dougherty, R., Freiling, C., Zeger, K., Linear rank inequalities on five or more variables., Available at arXiv.org, arXiv:0910.0284, 2019. 
  6. Martí-Farré, J., Padró, C., 10.1007/s10623-008-9264-9, Des. Codes Cryptogr. 52 (2009), 1-14. MR2496243DOI10.1007/s10623-008-9264-9
  7. Fujishige, S., 10.1016/s0019-9958(78)91063-x, Inform. Control 39 (1978), 55-72. MR0514262DOI10.1016/s0019-9958(78)91063-x
  8. Ingleton, A. W., Representation of matroids., In: Combinatorial mathematics and its applications (D. J. A. Welsh, ed.) Academic Press, London, New York 1971, pp. 149-169. MR0278974
  9. Lovász, L., 10.1007/978-3-642-68874-4_10, In: Mathematical Programming - The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.), Springer-Verlag, Berlin 1982, pp. 234-257. MR0717403DOI10.1007/978-3-642-68874-4_10
  10. Matúš, F., 10.1080/03081079308935205, Int. J. General Syst. 22 (1994), 185-196. DOI10.1080/03081079308935205
  11. Matúš, F., 10.1016/j.disc.2006.11.013, Discrete Math. 307 (2007), 2464-2477. MR2359593DOI10.1016/j.disc.2006.11.013
  12. Matúš, F., 10.1109/tit.2006.887090, IEEE Trans. Inform. Theory 53 (2007), 320-330. MR2292891DOI10.1109/tit.2006.887090
  13. Matúš, F., Infinitely many information inequalities., In: Proc. IEEE ISIT 2007, Nice, pp. 41-44. 
  14. Matúš, F., Studený, M., 10.1017/s0963548300001644, Combin. Probab. Comput. 4 (1995), 269-278. MR1356579DOI10.1017/s0963548300001644
  15. Oxley, J. G., Matroid Theory., Oxford Science Publications. The Calrendon Press, Oxford University Press, New York 1992. MR1207587
  16. Padró, C., Lecture Notes in Secret Sharing., Cryptology ePrint Archive 2012/674. 
  17. Seymour, P. D., 10.1016/0095-8956(92)90007-k, J. Combin. Theory, Ser B 56 (1992), 69-73. MR1182458DOI10.1016/0095-8956(92)90007-k
  18. Studeny, M., Bouckaert, R. R., Kocka, T., Extreme Supermodular Set Functions over Five Variables., Research Report No. 1977, Institute of Information Theory and Automation, Prague 2000. 
  19. Yeung, R. W., A first course in information theory., Kluwer Academic / Plenum Publishers 2002. MR2042182
  20. Ziegler, G. M., 10.1007/978-1-4613-8431-1, Graduate Texts in Mathematics 152 Springer, 1994. MR1311028DOI10.1007/978-1-4613-8431-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.