One-adhesive polymatroids
Kybernetika (2020)
- Volume: 56, Issue: 5, page 886-902
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCsirmaz, Laszlo. "One-adhesive polymatroids." Kybernetika 56.5 (2020): 886-902. <http://eudml.org/doc/297175>.
@article{Csirmaz2020,
abstract = {Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.},
author = {Csirmaz, Laszlo},
journal = {Kybernetika},
keywords = {polymatroid; amalgam; adhesive polymatroid; entropy function; polyhedral cone},
language = {eng},
number = {5},
pages = {886-902},
publisher = {Institute of Information Theory and Automation AS CR},
title = {One-adhesive polymatroids},
url = {http://eudml.org/doc/297175},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Csirmaz, Laszlo
TI - One-adhesive polymatroids
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 886
EP - 902
AB - Adhesive polymatroids were defined by F. Matúš motivated by entropy functions. Two polymatroids are adhesive if they can be glued together along their joint part in a modular way; and are one-adhesive, if one of them has a single point outside their intersection. It is shown that two polymatroids are one-adhesive if and only if two closely related polymatroids have joint extension. Using this result, adhesive polymatroid pairs on a five-element set are characterized.
LA - eng
KW - polymatroid; amalgam; adhesive polymatroid; entropy function; polyhedral cone
UR - http://eudml.org/doc/297175
ER -
References
top- Ahlswede, R., Cai, N., Li, S.-Y. R., Yeung, R. W., 10.1109/18.850663, IEEE Trans. Inform. Theory 46 (2000), 1204-1216. MR1768542DOI10.1109/18.850663
- Bonin, J. E., 10.1007/s00026-011-0112-7, Ann. Comb. 15 (2011), 619-624. MR2854783DOI10.1007/s00026-011-0112-7
- Christof, T., Loebel, A., Porta: Polyhedron Representation Transformation Algorithm, Version 1.4.1.
- Csirmaz, L., Matúš, F., 10.1109/tit.2016.2601598, IEEE Trans. Inf. Theory 62 (2016), 6007-6018. MR3565097DOI10.1109/tit.2016.2601598
- Dougherty, R., Freiling, C., Zeger, K., Linear rank inequalities on five or more variables., Available at arXiv.org, arXiv:0910.0284, 2019.
- Martí-Farré, J., Padró, C., 10.1007/s10623-008-9264-9, Des. Codes Cryptogr. 52 (2009), 1-14. MR2496243DOI10.1007/s10623-008-9264-9
- Fujishige, S., 10.1016/s0019-9958(78)91063-x, Inform. Control 39 (1978), 55-72. MR0514262DOI10.1016/s0019-9958(78)91063-x
- Ingleton, A. W., Representation of matroids., In: Combinatorial mathematics and its applications (D. J. A. Welsh, ed.) Academic Press, London, New York 1971, pp. 149-169. MR0278974
- Lovász, L., 10.1007/978-3-642-68874-4_10, In: Mathematical Programming - The State of the Art (A. Bachem, M. Grötchel and B. Korte, eds.), Springer-Verlag, Berlin 1982, pp. 234-257. MR0717403DOI10.1007/978-3-642-68874-4_10
- Matúš, F., 10.1080/03081079308935205, Int. J. General Syst. 22 (1994), 185-196. DOI10.1080/03081079308935205
- Matúš, F., 10.1016/j.disc.2006.11.013, Discrete Math. 307 (2007), 2464-2477. MR2359593DOI10.1016/j.disc.2006.11.013
- Matúš, F., 10.1109/tit.2006.887090, IEEE Trans. Inform. Theory 53 (2007), 320-330. MR2292891DOI10.1109/tit.2006.887090
- Matúš, F., Infinitely many information inequalities., In: Proc. IEEE ISIT 2007, Nice, pp. 41-44.
- Matúš, F., Studený, M., 10.1017/s0963548300001644, Combin. Probab. Comput. 4 (1995), 269-278. MR1356579DOI10.1017/s0963548300001644
- Oxley, J. G., Matroid Theory., Oxford Science Publications. The Calrendon Press, Oxford University Press, New York 1992. MR1207587
- Padró, C., Lecture Notes in Secret Sharing., Cryptology ePrint Archive 2012/674.
- Seymour, P. D., 10.1016/0095-8956(92)90007-k, J. Combin. Theory, Ser B 56 (1992), 69-73. MR1182458DOI10.1016/0095-8956(92)90007-k
- Studeny, M., Bouckaert, R. R., Kocka, T., Extreme Supermodular Set Functions over Five Variables., Research Report No. 1977, Institute of Information Theory and Automation, Prague 2000.
- Yeung, R. W., A first course in information theory., Kluwer Academic / Plenum Publishers 2002. MR2042182
- Ziegler, G. M., 10.1007/978-1-4613-8431-1, Graduate Texts in Mathematics 152 Springer, 1994. MR1311028DOI10.1007/978-1-4613-8431-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.