Squarefree monomial ideals with maximal depth
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1111-1124
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRahimi, Ahad. "Squarefree monomial ideals with maximal depth." Czechoslovak Mathematical Journal 70.4 (2020): 1111-1124. <http://eudml.org/doc/297184>.
@article{Rahimi2020,
abstract = {Let $(R,\mathfrak \{m\})$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak \{p\}$ of $M$ such that depth $M=\dim R/\mathfrak \{p\}$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.},
author = {Rahimi, Ahad},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal},
language = {eng},
number = {4},
pages = {1111-1124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Squarefree monomial ideals with maximal depth},
url = {http://eudml.org/doc/297184},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Rahimi, Ahad
TI - Squarefree monomial ideals with maximal depth
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1111
EP - 1124
AB - Let $(R,\mathfrak {m})$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak {p}$ of $M$ such that depth $M=\dim R/\mathfrak {p}$. In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.
LA - eng
KW - maximal depth; cycle graph; line graph; whisker graph; transversal polymatroidal ideal; power of edge ideal
UR - http://eudml.org/doc/297184
ER -
References
top- Brodmann, M., 10.2307/2042097, Proc. Am. Math. Soc. 74 (1979), 16-18. (1979) ZblA0395.13008MR0521865DOI10.2307/2042097
- Bruns, W., Herzog, J., 10.1017/cbo9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/cbo9780511608681
- Faridi, S., 10.1016/j.jpaa.2003.11.014, J. Pure Appl. Algebra 190 (2004), 121-136. (2004) Zbl1045.05029MR2043324DOI10.1016/j.jpaa.2003.11.014
- Francisco, C. A., Hà, H. T., 10.1016/j.jcta.2007.06.004, J. Comb. Theory, Ser. A 115 (2008), 304-316. (2008) Zbl1142.13021MR2382518DOI10.1016/j.jcta.2007.06.004
- Frühbis-Krüger, A., Terai, N., Bounds for the regularity of monomial ideals, Mathematiche, Suppl. 53 (1998), 83-97. (1998) Zbl0951.13017MR1696019
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260, Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Rauf, A., Vladoiu, M., 10.1007/s10801-012-0367-z, J. Algebr. Comb. 37 (2013), 289-312. (2013) Zbl1258.13014MR3011344DOI10.1007/s10801-012-0367-z
- Jacques, S., Betti Numbers of Graph Ideals: Ph.D. Thesis, University of Sheffield, Sheffield (2004), Available at https://arxiv.org/abs/math/0410107. (2004)
- Lam, H. M., Trung, N. V., 10.1090/tran/7662, Trans. Am. Math. Soc. 372 (2019), 3211-3236. (2019) Zbl1420.13023MR3988608DOI10.1090/tran/7662
- Martínez-Bernal, J., Morey, S., Villarreal, R. H., 10.1007/s13348-011-0045-9, Collect. Math. 63 (2012), 361-374. (2012) Zbl1360.13027MR2957976DOI10.1007/s13348-011-0045-9
- Miller, E., Sturmfels, B., Yanagawa, K., 10.1006/jsco.1999.0290, J. Symb. Comput. 29 (2000), 691-708. (2000) Zbl0955.13008MR1769661DOI10.1006/jsco.1999.0290
- Rahimi, A., 10.1142/S021949881850202X, J. Algebra Appl. 17 (2018), Article ID 1850202, 12 pages. (2018) Zbl1409.13023MR3879078DOI10.1142/S021949881850202X
- Villarreal, R. H., 10.1201/b18224, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton (2015). (2015) Zbl1325.13004MR3362802DOI10.1201/b18224
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.