Joint distribution for the Selmer ranks of the congruent number curves

Ilija S. Vrećica

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 105-119
  • ISSN: 0011-4642

Abstract

top
We determine the distribution over square-free integers n of the pair ( dim 𝔽 2 Sel Φ ( E n / ) , dim 𝔽 2 Sel Φ ^ ( E n ' / ) ) , where E n is a curve in the congruent number curve family, E n ' : y 2 = x 3 + 4 n 2 x is the image of isogeny Φ : E n E n ' , Φ ( x , y ) = ( y 2 / x 2 , y ( n 2 - x 2 ) / x 2 ) , and Φ ^ is the isogeny dual to Φ .

How to cite

top

Vrećica, Ilija S.. "Joint distribution for the Selmer ranks of the congruent number curves." Czechoslovak Mathematical Journal 70.1 (2020): 105-119. <http://eudml.org/doc/297190>.

@article{Vrećica2020,
abstract = {We determine the distribution over square-free integers $n$ of the pair $(\dim _\{\mathbb \{F\}_2\}\{\rm Sel\}^\Phi (E_n/\mathbb \{Q\}),\dim _\{\mathbb \{F\}_2\} \{\rm Sel\}^\{\widehat\{\Phi \}\}(E_n^\{\prime \}/\mathbb \{Q\}))$, where $E_n$ is a curve in the congruent number curve family, $E_n^\{\prime \}\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n^\{\prime \}$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat\{\Phi \}$ is the isogeny dual to $\Phi $.},
author = {Vrećica, Ilija S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; congruent number problem; Selmer group},
language = {eng},
number = {1},
pages = {105-119},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Joint distribution for the Selmer ranks of the congruent number curves},
url = {http://eudml.org/doc/297190},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Vrećica, Ilija S.
TI - Joint distribution for the Selmer ranks of the congruent number curves
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 105
EP - 119
AB - We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat{\Phi }}(E_n^{\prime }/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n^{\prime }\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n^{\prime }$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat{\Phi }$ is the isogeny dual to $\Phi $.
LA - eng
KW - elliptic curve; congruent number problem; Selmer group
UR - http://eudml.org/doc/297190
ER -

References

top
  1. Brent, R. P., McKay, B. D., 10.1016/0012-365X(87)90117-8, Discrete Math. 66 (1987), 35-49. (1987) Zbl0628.15010MR0900928DOI10.1016/0012-365X(87)90117-8
  2. Faulkner, B., James, K., 10.1007/s11139-006-9008-2, Ramanujan J. 14 (2007), 107-129. (2007) Zbl1197.11065MR2299044DOI10.1007/s11139-006-9008-2
  3. Feng, K., 10.4064/aa-75-1-71-83, Acta Arith. 75 (1996), 71-83. (1996) Zbl0838.11039MR1379391DOI10.4064/aa-75-1-71-83
  4. Feng, K., Xiong, M., 10.1016/j.jnt.2003.12.015, J. Number Theory 109 (2004), 1-26. (2004) Zbl1076.11036MR2098473DOI10.1016/j.jnt.2003.12.015
  5. Heath-Brown, D. R., 10.1007/BF01231285, Invent. Math. 111 (1993), 171-195. (1993) Zbl0808.11041MR1193603DOI10.1007/BF01231285
  6. Heath-Brown, D. R., 10.1007/BF01231536, Invent. Math. 118 (1994), 331-370. (1994) Zbl0815.11032MR1292115DOI10.1007/BF01231536
  7. Kane, D., Klagsbrun, Z., On the joint distribution of S e l Φ ( E / ) and S e l Φ ^ ( E ' / ) in quadratic twist families, Available at https://arxiv.org/abs/1702.02687v1 (2007), 25 pages. (2007) 
  8. Koblitz, N., 10.1007/978-1-4612-0909-6, Graduate Texts in Mathematics 97, Springer, New York (1984). (1984) Zbl0553.10019MR0766911DOI10.1007/978-1-4612-0909-6
  9. Rhoades, R. C., 10.1016/j.jnt.2009.01.015, J. Number Theory 129 (2009), 1379-1391. (2009) Zbl1245.11078MR2521480DOI10.1016/j.jnt.2009.01.015
  10. Xiong, M., Zaharescu, A., 10.4171/CMH/151, Comment. Math. Helv. 84 (2009), 21-56. (2009) Zbl1180.11017MR2466074DOI10.4171/CMH/151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.