Joint distribution for the Selmer ranks of the congruent number curves
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 105-119
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVrećica, Ilija S.. "Joint distribution for the Selmer ranks of the congruent number curves." Czechoslovak Mathematical Journal 70.1 (2020): 105-119. <http://eudml.org/doc/297190>.
@article{Vrećica2020,
abstract = {We determine the distribution over square-free integers $n$ of the pair $(\dim _\{\mathbb \{F\}_2\}\{\rm Sel\}^\Phi (E_n/\mathbb \{Q\}),\dim _\{\mathbb \{F\}_2\} \{\rm Sel\}^\{\widehat\{\Phi \}\}(E_n^\{\prime \}/\mathbb \{Q\}))$, where $E_n$ is a curve in the congruent number curve family, $E_n^\{\prime \}\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n^\{\prime \}$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat\{\Phi \}$ is the isogeny dual to $\Phi $.},
author = {Vrećica, Ilija S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; congruent number problem; Selmer group},
language = {eng},
number = {1},
pages = {105-119},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Joint distribution for the Selmer ranks of the congruent number curves},
url = {http://eudml.org/doc/297190},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Vrećica, Ilija S.
TI - Joint distribution for the Selmer ranks of the congruent number curves
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 105
EP - 119
AB - We determine the distribution over square-free integers $n$ of the pair $(\dim _{\mathbb {F}_2}{\rm Sel}^\Phi (E_n/\mathbb {Q}),\dim _{\mathbb {F}_2} {\rm Sel}^{\widehat{\Phi }}(E_n^{\prime }/\mathbb {Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n^{\prime }\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi \colon E_n\rightarrow E_n^{\prime }$, $\Phi (x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat{\Phi }$ is the isogeny dual to $\Phi $.
LA - eng
KW - elliptic curve; congruent number problem; Selmer group
UR - http://eudml.org/doc/297190
ER -
References
top- Brent, R. P., McKay, B. D., 10.1016/0012-365X(87)90117-8, Discrete Math. 66 (1987), 35-49. (1987) Zbl0628.15010MR0900928DOI10.1016/0012-365X(87)90117-8
- Faulkner, B., James, K., 10.1007/s11139-006-9008-2, Ramanujan J. 14 (2007), 107-129. (2007) Zbl1197.11065MR2299044DOI10.1007/s11139-006-9008-2
- Feng, K., 10.4064/aa-75-1-71-83, Acta Arith. 75 (1996), 71-83. (1996) Zbl0838.11039MR1379391DOI10.4064/aa-75-1-71-83
- Feng, K., Xiong, M., 10.1016/j.jnt.2003.12.015, J. Number Theory 109 (2004), 1-26. (2004) Zbl1076.11036MR2098473DOI10.1016/j.jnt.2003.12.015
- Heath-Brown, D. R., 10.1007/BF01231285, Invent. Math. 111 (1993), 171-195. (1993) Zbl0808.11041MR1193603DOI10.1007/BF01231285
- Heath-Brown, D. R., 10.1007/BF01231536, Invent. Math. 118 (1994), 331-370. (1994) Zbl0815.11032MR1292115DOI10.1007/BF01231536
- Kane, D., Klagsbrun, Z., On the joint distribution of and in quadratic twist families, Available at https://arxiv.org/abs/1702.02687v1 (2007), 25 pages. (2007)
- Koblitz, N., 10.1007/978-1-4612-0909-6, Graduate Texts in Mathematics 97, Springer, New York (1984). (1984) Zbl0553.10019MR0766911DOI10.1007/978-1-4612-0909-6
- Rhoades, R. C., 10.1016/j.jnt.2009.01.015, J. Number Theory 129 (2009), 1379-1391. (2009) Zbl1245.11078MR2521480DOI10.1016/j.jnt.2009.01.015
- Xiong, M., Zaharescu, A., 10.4171/CMH/151, Comment. Math. Helv. 84 (2009), 21-56. (2009) Zbl1180.11017MR2466074DOI10.4171/CMH/151
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.